Etikettarkiv: VINNOVA

Guldkorn från svensk forskning

Det här är svenska guldkorn från er läsare. Tack för ert fantastiska jobb.

Eldsjäl: Elektriska delade självkörande fordon i det framtida fossiloberoende transportsystemet
Trafikkontoret i Göteborg, Västtrafik, K2/Malmö Universitet och Trivector har genomfört Drive Sweden-projektet Eldsjäl. Projektet analyserade hur delade självkörande elektriska fordon kan komma att påverka staden och transportsystemet i Göteborgsregionen. Det syftade till att skapa en ökad förståelse för hur elektriska delade självkörande fordon kan påverka och komplettera kollektivtrafiken men också hur transportsystemet i stort påverkas utifrån ett hållbarhetsperspektiv. I projektet utvecklades möjliga framtidsscenarier vilka sedan modellerades i Göteborg Stads nya multimodala VISUM-modell. Från scenarierna erhölls resultat i form av hur trafiken påverkas och parametrar såsom restider, trafikflöden, fordonsflotta och beläggning i fordonen. I projektet genomfördes också digitala djupintervjuer för att få en bättre förståelse för människors inställning, resonemang och behov kring självkörande fordon i staden i allmänt och kring simuleringsresultaten i synnerhet. Mer information om projektet hittar du här eller kontakta Lennart Persson, Trivector, (lennart.persson@trivector.se)

Will leisure trips be more affected than work trips by autonomous technology? Modelling self-driving public transport and cars in Stockholm, Sweden
I studien användes den svenska transportmodellen Sampers för att undersöka vad självkörande fordon skulle innebära för Stockholm, genom en av de första modellstudierna där överflyttning mellan trafikslag ingår. En överflyttning från gång- och cykeltrafik hittades i samtliga scenarier, framförallt till biltrafik men i mindre mån skulle även självkörande teknik för kollektivtrafik innebära att människor åkte kollektivtrafik istället för att gå eller cykla. Nytt var även att vi undersökte geografiska skillnader och kom fram till störst effekter i förorter till Stockholm – med motiveringen att förbättringen av tillgängligheten för kollektivtrafik och bilar i innerstaden relativt sett skulle vara mindre. På samma sätt har de flesta redan bil på landsbygden och avstånden är långa, vilket ger få överflyttningseffekter. Där kan däremot anropsstyrd kollektivtrafik vara ett bra alternativ till bilen. Därutöver, som titeln antyder, undersökte resors olika syften och såg små effekter för transportsystemet för arbetspendling. Istället är det på fritiden som den stora ökningen av tillgänglighet får effekten att människor helt enkelt göra fler resor. Ni kan läsa den vetenskapliga artikeln här. Kontaktperson Erik Almlöf (ealmlof@kth.se)

Frameworks for assessing societal impacts of automated driving technology
I studien gjordes en översikt av de olika ramverk som finns för att utvärdera effekterna av självkörande teknik. Det identifierades 13 tidigare ramverk med ambitionen att täcka mer än ett område (t ex så försvann då ramverk som bara tittade på säkerhetsaspekter) och val av både metod och redovisade områden varierade stort. Det konstaterades att inget av de identifierade ramverken täcker allt, istället har olika ramverk olika styrkor. Därtill användes Trafikverkets metod för samhällsekonomiska bedömningar för att utvärdera en föreslagen autonom busslinje i södra Stockholm och det kunde konstateras att projektet skulle kunna ge stora, och lite oväntade, vinster i form av framförallt bekvämare resor för resenärer, medan t ex olyckor var en relativt marginell faktor. Samtidigt så täcker inte den nuvarande metoden för samhällsekonomiska bedömningar alla aspekter av effekter av självkörande teknik, t ex ökad arbetslöshet, då metoden främst används för infrastrukturåtgärder. Den vetenskapliga artikeln hittas här. Kontaktperson Erik Almlöf (ealmlof@kth.se)

5GCroCo – FIFTH GENERATION CROSS-BORDER CONTROL, a project funded by EU H2020 program
The 5GCroCo project has carried out large-scale connected car trials along two 5G corridors that cross the borders between France-Germany and Luxembourg-Germany. The trials carried out in these corridor areas proved that seamless service continuity on 5G networks can be guaranteed across borders. The service continuity solution implemented in 5GCroCo is achieved through a cross-border (and cross-MNO) handover, which results in an almost imperceptible service interruption time of around 120 ms. The seamless service continuity is important for all of the three use case that were demonstrated: Tele Operated Driving (VW); HD mapping (Volvo Cars); and Anticipated Cooperative Collision Avoidance (PSA and Renault). In today’s mobile networks, the connection breaks and needs to be re-established, which took more than 6 seconds with the devices used in the conducted trials. In all cases the service interruption time is significantly reduced compared to tens of seconds, or even minutes, experienced today when you are crossing a country border. The handover solution implemented in 5GCroCo is thus essential to enable continuous driving experiences between 5G national networks when connected and autonomous vehicles cross from one country to another. In addition to the large-scale trails, tests have been performed at AstaZero, using the 5G network from Ericsson, where a virtual country border was emulated on the rural road test track. 5GCroCo consortium in short: 24 partners from 7 European Countries, Total project budget about 17M€, EC contribution about 13M€, Project duration: 44 Months, 3 CAM key use cases demonstrated. Ni kan läsa mer på länken här. Kontaktperson Mikael Nilsson (mikael.nilsson@volvocars.com)

Assuring Safety for Rapid and Continuous Deployment for autonomous driving (ASSERTED)
Assuring safety of ML-enabled systems like Autonomous Driving (AD) Function in DevOps context is the challenge which will be addressed in ASSERTED. Our research goal is to explore methods and technical solutions for coping better with safety of autonomously driving vehicles for rapid and continuous development and deployment. The project is a collaboration between Volvo Cars, Zenseact, and Chalmers. ASSERTED is funded by Sweden’s Innovation Agency (Diarienummer: 2021-02585), and supported by WASP. https://youtu.be/YRlSpd6NIm8 Contact person Ali Nouri (ali.nouri@volvocars.com)

Digital trafiksäkerhetslösning: en förstudie
En förstudie som ämnar öka förståelsen och möjligheterna för en kostnadseffektiv och robust-över-tid digital trafiksäkerhetslösning som automatiskt varnar för annalkande trafik i obevakade plankorsningar håller nu på att avslutas. Förstudien har koordinerats av RISE tillsammans med företaget Crossing Safety och syftet är att risken för plankorsningsolyckor, samt kostnader för plankorsningsåtgärder, ska kunna reduceras. Ett ”proof-of-concept” utfördes den andra december med en utvecklad mobil-app som varnar för tåg då man befinner sig inom ett visst förutbestämt område från en obevakad plankorsning. Slutrapport publiceras i januari. https://youtu.be/YErx4DjlfyM. Kontaktperson Joakim Rosell (joakim.rosell@ri.se)

AUTOPIA – successful operation in Nordic winter conditions
From April 2021 until January 2022, Ruter and the AUTOPIA partnership trialed a service of AV transport in Ski, Norway. As a feeding shuttle to Ski train station, the pilot project aimed to demonstrate the benefits of a fleet of ride-shared AVs as an integrated part of public transport. Retrofitted Toyota Proaces with Sensible4’s AV technology were used in a publicly open service driving more than 10.000 kilometers through all seasons. Among others, the project resulted in new methodology for site/vehicle matching, experience with key issues of winter operation, and demonstrated that AVs can handle Nordic winter conditions successfully. All learning reports, videos and more can be found here: https://ruter.no/automated-mobility AUTOPIA consisted of the Nordic partners Ruter, Holo, Norwegian Public Road Administration, Viken municipality, TØI and Sensible4 as well as Toyota Motor Europe. Several others were involved in the project, including Edeva from Sweden. eirik.mero@ruter.no Eirik Mero

Augmented CCAM
Augmented CCAM (https://www.augmentedccam.com/) är ett HEU-projekt (https://www.ccam.eu/projects/augmented-ccam/) som syftar till att förstå, harmonisera och utvärdera olika lösningar i den fysiska och digitala infrastrukturen (så kallade PDI-koncept – Physical and Digital Infrastructure) för att förenkla och förbättra storskaligt införande av självkörande fordon. Det kan t.ex. handla om hjälp för att detektera oskyddade trafikanter eller vägarbetspersonal, interaktion med utryckningsfordon eller vävningssituationer. Projektet koordineras av FEHRL och konsortiet består av 26 parter från 13 länder. Från Sverige deltar VTI med körsimulatorförsök som syftar till att undersöka trafikanters interaktioner med något eller några av de framtagna PDI-koncepten samt genomföra trafiksimuleringsexperiment för att skala upp effekter, från studier av enskilda fordon och trafikanter i körsimulator eller digitala tvillingar, till ett trafiksystem med olika andel fordon eller trafikanter som kan utnyttja PDI-koncepten. Johan Olstam (johan.olstam@vti.se)

I4Driving
HEU-Projektet i4Driving (https://i4driving.eu/) syftar till att lägga grunden för en ny standardmetod för utvärdering av säkerhet hos självkörande fordon genom att ta fram en trovärdig och realistisk säkerhetsreferensnivå (hur säkert en mänsklig förare kör i en given situation). Detta dels genom att ta fram ett modulärt och skalbart bibliotek av förarmodeller för simulering och dels genom en metodik för att beakta den stora variationen och osäkerheten i mänskligt förarbeteende i olika situationer. Projektet koordineras av Panteia och konsortiet består av 14 parter samt 3 parter från USA, Australien och Kina. Från Sverige deltar VTI som kommer att bidra med kunskaper kring föraruppmärksamhet, förarmodellering och med körsimulatorförsök i syfte att fånga variation i förarbeteende i olika situationer. VTI kommer också genomföra en variant på Turing-test där tanken är att undersöka om mänskliga förare kan särskilja förarbeteende från den utvecklade förarmodellen från en verklig förare. Kontaktperson Johan Olstam (johan.olstam@vti.se)

GLAD, Godsleverans under den sista milen med självkörande fordon är ett nyligen avslutat projekt som delfinansierats av Trafikverket och utförts av RISE, Clean Motion, Combitech och Aptiv. I projektet undersöktes vilka områden som s.k. Autonomous Delivery Vehicles (ADV) kan användas och vilka utmaningar som måste hanteras vid implementering av sådana fordon för sista-milen leveranser. Man undersökte också interaktioner mellan ADV:er och andra trafikanter, och operatörer som interagerar med ADV:er i terminalmiljö. Flera av studierna utfördes med hjälp av ADV-prototyper som utvecklades under projektet. Prototypen med självkörande funktioner hade ett autonomt transporthanteringssystem (eng. Autonomous Transport Management System, ATMS) som placerades i en molntjänst med kapabilitet för fjärrkontroll. Projektet undersökte även legala aspekter av ADV:er, med fokus på hur de kan klassificeras. Beroende på ADV:ns maxhastighet och lastkapacitet skulle denna typ av fordon kunna klassificeras som antingen 4-hjulig tung motorcykel för godstransport, eller som motorverktyg. Det förstnämnda kan innebära längre väg till marknadsintroduktion p.g.a högre säkerhetskrav. Resultaten från studierna om interaktioner mellan människor och ADV:er visade bl.a att fordonets körbeteende hade en betydande roll i att förmedla fordonets beteende och avsikt att lämna/inte lämna företräde, samt att ljussignaler på fordonet (e-HMI) kan bidra till att lättare förstå fordonets beteende. En studie som gjordes i en simulerad terminalmiljö visade även att kontexten d.v.s terminalscenariot, situationerna och arbetsuppgifterna var viktig för deltagarna att förstå innebörden av fordonets eHMI. Kontaktperson: Mikael Söderman (mikael.soderman@ri.se)

Digital traffic rules for a connected and automated road transport system. Within the framework of Drive Sweden Policy Lab 2021/22, ways towards a future system for digital traffic rules were identified. Sweden has, from an international perspective, come a long way but there are challenges that can only be solved with a common approach. The project gathered relevant actors to understand how the conditions for change look like, as well as how a change would be received by all relevant actors. Actors ranging from those who issue local traffic rules to those who benefit from the information being presented in a machine-readable format (e.g. navigation service providers, vehicle manufacturers, road users etc.). Reliable information is needed already today for various applications and supporting IT systems and will become increasingly important with a connected and automated road transport system. The project Drive Sweden Policy Lab 2021/22 is funded through the strategic innovation program Drive Sweden by Vinnova, Formas and the Swedish Energy Agency. Join our final digital event (in Swedish) and register via Drive Sweden. Contact persons Cilli Sobiech (cilli.sobiech@ri.se) & Jenny Lundahl (jenny.lundahl@ri.se).

Independent assessment in trials with automated vehicles. The Swedish Transport Agency’s regulations and general advice on trials with autonomous vehicles have recently been amended (TSFS 2021:4, last amended by TSFS 2022:82). If the application concerns trials where technical systems are used to a large extent to ensure road safety, the risk assessment in the application should be supplemented with a statement from an independent assessor who examines that the system can ensure road safety. However, there is no further guidance on when an assessment is needed and what it should cover. RISE is gathering relevant vehicle manufacturers, vehicle operators, assessors, and authorities to clarify and harmonize what an independent assessment of road safety should cover, how the new general advice can be applied in practice and what experiences we can build upon for independent assessment and application processes from other countries and transport areas. If you are interested in participating contact Cilli Sobiech at RISE (cilli.sobiech@ri.se) & Jenny Lundahl (jenny.lundahl@ri.se).

Co-opetitive systems of systems for mobility.
In the recently finished research projects Maus and Orm, foundational aspects of co-opetitive systems of systems for future mobility systems have been explored. A co-opetitive system of systems consists of several independently managed and operated constituent systems that are both collaborating in constellations that solve user needs and competing for business. The projects have developed research results in architecture and design, value network flow analysis, governance, decision-making, and policy analysis. The projects are joint work between RISE, AFRY, Volvo Cars, and (for Orm) Trollhättans stad, and have received funding from Vinnova. More information, including one introductory and one visionary movie about the results, can be found at http://www.sos-4-mobility.se/ or by contacting Pontus Svenson (pontus.svenson@ri.se).

Skara Skyddsängel – Infrastrukturtjänster on-demand för säkrare, tryggare och bekvämare aktiv mobilitet
För säkert cyklande i mörka nordiska miljöer krävs ljus. Forskningsprojektet Skara skyddsängel arbetar för att utveckla och testa autonoma drönare som ett alternativt sätt att lysa upp mörka cykelvägar i Skara kommun. Projektet koordineras av RISE med partner Högskolan i Skövde, Jönköpings Universitet och Skara Kommun.  Det övergripande syftet med projektet är att belysa såväl cykelvägar som möjligheter för människor att välja ett hälsosamt, hållbart och kostnadseffektivt resande. Som en del av projektet har fokusgrupp studier utfört i juni med VR och pilotförsök hållits i november på de utvalda cykelvägarna. Tillsammans med testet har intervjuer gjorts för att undersöka människors nuvarande resvanor och förstå mer om känslan av säkerhet i relation till bland annat mörker och om drönarbelysningen kan bidra till att underlätta hållbart resande. I början av 2023 genomför projektet ytterligare en pilotstudie med utökat testmöjligheter. De som bor i Skara som är intresserad är välkomna att anmäla med länken https://forms.office.com/r/eNjgYcfF7M. Ni kan läsa mer om projektet här. Kontaktperson: Lei Chen (lei.chen@ri.se)

DiG Drönarleverans i Glesbygd
Leverans av paket och gods på svensk landsbygd är utmanande med längre leveranstid och transportutsläpp, särskilt i skärgårdsområden där vattentransporter behövs. Klimatförändringarna är en akut fråga som kräver att vi gör allt för att hitta motlösningar, samtidigt driver näthandeln behovet av logistik till en ny tidshöjd. DiG är ett Vinnova-finansierad projekt med syftet att undersöka det senaste inom drönarleverans med anpassningar till svenska landsbygdsegenskaper för att minska utsläppen, öka servicejämlikheten och tillgänglighet. Projektet koordineras av RISE med samarbeten mellan Aerit – den svenska drönarleverans startuppen, ICAx – innovationsgruppen på ICA Gruppen och Norrtälje kommun, med stöd från ICA Nära Gräddö och Öbutiken i Tjocke. Genom året har projektet utvecklat och testat autonoma drönarleveranssystem och integrerat med ICA Pronto appen. Nu i december pågår pilot i Norrtälje och de utvalda kunderna kommer kunna beställa vissa varor med drönare som ett leverans alternativ. Ni kan läsa mer om projektet här. Kontaktperson: Lei Chen (lei.chen@ri.se)

Guldkorn från svensk forskning

Det här är svenska guldkorn från er läsare. Tack för ert fantastiska jobb.

Autonoma leveransfordon i interaktion. Inom projektet GLAD (Goods deliveries under the LAst mile with autonomous Driving vehicles) genomfördes under maj månad en användarstudie där en ADV (Automated Delivery Vehicle) utrustad med s.k. eHMI:er (visuella medel som kommunicerar till människor i omgivningen) körde en kortare rutt. Syftet var att utvärdera hur individer uppfattade och förstod eHMI:erna i olika situationer, samt hur de kan utvecklas. Preliminära resultat indikerar att eHMI:erna i sig inte kommunicerade sina specifika budskap, men att de i sina givna sammanhang blev begripliga. Resultaten visade även på tydliga inlärningseffekter, d.v.s. deltagarna lärde sig snabbt eHMI:ernas budskap. Projektet är finansierad av Trafikverket och utförs av RISE, Clean Motion, Aptiv, Combitech och Högskolan i Halmstad. Kontakt: Mikael Söderman, RISE, (mikael.soderman@ri.se)

Förstudie SMART-projektet. Som en del av det EU-finansierade SMART-projektet genomför RISE en förstudie kring förutsättningarna för att komplettera kollektivtrafiken med förarlösa tjänster i Skaraborg. Projektet leds av Destination Läckö/Kinnekulle som är ett kommunalt bolag ägt av Götene och Lidköping. Preliminära resultat visar att det i några av tätorterna finns intressanta systemeffekter värda att studera närmare men att det är svårt att hitta lämpliga lösningar för lite längre avstånd mellan kollektivtrafikens hållplatser och populära utflyktsmål eller uppför Kinnekulles de branta vägar. Det finns också sträckor i området där det antagligen finns en marknad för kommersiella tjänster med manuellt framförda fordon. Kontakt: Håkan Burden, RISE, (hakan.burden@ri.se)

Generering av dimma och väderklassificering. RISE och Veoneer har under våren 2022 genomfört en förstudie ”Dimhöljt” för lära hur dimma kan skapas i klimatkammare. Syftet med den genererade dimman är att testa lidar, t ex för att filtrera bort störningar, för att validera simuleringsmodeller, för att verifiera sensorprestanda eller för att verifiera att en funktion är inom ODD. Det finns i princip tre olika sätt att slå sönder vatten till fina droppar: med vibrationer, med trycksatt vatten eller med tryckluft; man kan även generera dimma genom att kondensera ånga. Dimma är våta aerosoler i storleksordning från våglängden av synligt ljus till en faktor 20-50 ggr större. Projektet har också undersökt hur mätning av dimmans karaktäristik utförs på lämpligt sätt. Mätningar måste bland annat inkludera storleksfördelning av partiklar och mängden vatten i flytande form. Det är viktigt att skapa repeterbart testsystem med dimma. I projektet studerades därtill hur man med en lidar kan klassificera vädertyper såsom dimma, regn, snö, klart väder. Studien baserades på mätningar utomhus och i klimatkammare. De inledande försöken har varit framgångsrika och tanken är att förstudien ”Dimhöljt” följs av en fördjupad ansats. Förstudien delfinansierades av Vinnova/FFI, 2021-02582. Kontakt: Martin Sanfridson, RISE, (martin.sanfridson@ri.se)

Autonoma fordon för blinda, döva och dövblinda. I en nyligen publicerad journalartikel vid namn ”Vibrotactile guidance for trips with autonomous vehicles for persons with blindness, deafblindness, and deafness” presenteras resultat från Drive Sweden projektet ”Guidning till autonoma fordon för blinda, döva och dövblinda”. Studien visar bland annat på vikten av att beakta användarperspektivet för hela resan, inte bara fordonet i sig. Artikeln finns att läsa här. Kontaktperson Jonas Andersson (jonas.andersson@ri.se)

Best student paper på IEEE konferens. Vid konferensen IEEE Intelligent Vehicles Symposium vann doktoranden José Manuel Gaspar Sánchez och industridoktoranden Truls Nyberg från KTH och Scania första pris i kategorin ”Best student paper” med artikeln ”Foresee the Unseen: Sequential Reasoning about Hidden Obstacles for Safe Driving”. I samarbete mellan KTH och Scania har studenterna utarbetat en algoritm för autonoma fordon för att hantera skymda trafikanter på ett säkert och effektivt sätt. Forskningen har finansierats genom Vinnovas center TeCOSA och forskningsprogrammet WASP.
Andra pris i kategorin gick till industridoktoranden Magnus Gyllenhammar vid KTH och Zenseact för artikeln ”Uncertainty Aware Data Driven Precautionary Safety for Automated Driving Systems Considering Perception Failures and Event Exposure”, också den finansierad genom WASP. Kontaktperson Truls Nyberg (truls.nyberg@scania.com)  & Magnus Gyllenhammar (gyllenhammar@zenseact.com). 

Syntetisk data för validering. En vanlig utmaning inom maskininlärning är att ta fram realistisk data både för att träna sina nätverk samt för att validera dem. I dag är en vanlig metod att samla in data i den miljö där nätverket ska appliceras, t.ex. i trafiken, och sedan hoppas att det resulterande datasetet ska vara representativt. Detta är tyvärr sällan fallet eftersom att det är svårt att få med alla tänkbara scenarion. Inom FFI-projektet DIFFUSE utvecklas metoder för att skapa syntetisk data och bilder primärt för valideringssyften. Tanken är att förbättra de maskininlärningsmetoder som i dagsläget bara i begränsad omfattning ger kontroll över vad den resulterande bilden innehåller. Kontaktperson Martin Torstensson (martin.torstensson@ri.se)

Future mobility services in Ride the future-project. Ride the future is a multi-brand pilot where 8 partners join forces in running three autonomous buses along a 4 km route in Linköping’s Valla district. The partners are VTI, Linköping University, Linköping Science Park, Transdev Sweden AB, Östgötatrafiken, Linköpings kommun, Akademiska Hus and RISE. The area includes residential housing, businesses and the campus of Linköping University (LiU). 
Ride the future is furthermore one of the sites in the larger Horizon 2020-project called SHOW (SHared automation Operating models for Worldwide adoption), and a platform for several projects related to future mobility solutions. To date over 20 studies and research projects – completed and ongoing – are related to Ride the Future. A result conference was held 26 April and presented findings about the following topics:

  • Lessons learned from setting up a demonstration site with autonomous shuttle operation; paper (funding: SHOW)
  • Mobility for all – but who is ”all”?  paper (funding: Drive Sweden)
  • 5 feasibility studies (funded by VTI and summarised in here) about
    • Towards a digital twin of campus Valla for co-simulation of road users 
    • Exploring spatio-temporal accessibility in Lambohov: a pre-study. 
    • Data processing and visualization of mobile air quality measurements. 
    • Road surface unevenness and its impact on comfort and vibrations in low speed vehicles
    • Infrastructure needs at bus stops. 
  • The following studies were also presented at the conference. (funding in brackets):
    • Säkerhetsförarens uppmärksamhet och vakenhet (FFI)
    • The digital infrastructure of ELIN’s data collection (SHOW=EU)
    • Automated Vehicles as Social Agents: A Research Agenda (ELLIIT)
    • Cybersecurity of autonomous vehicles (Drive Sweden)
    • Digital guidance in public transport (funding: ERA-net)
    • Children’s perspective on future travels by autonomous bus (SHOW)
    • Autonomous shuttles for all – Experiences from children with intellectual disability (WASP-HS)
    • Game engine simulation of autonomous buses in a student project (LiU)
    • Ljudsignaler i interaktion mellan autonoma bussar och oskyddade trafikanter (LiU)
    • For more information and contact to project leaders, please get in touch with Ingrid Skogsmo (ingrid.skogsmo@vti.se)

Säkerhetskultur för automatiserade fordon. Målet för projektet Säkerhetskultur för automatiserade fordon är att utveckla metoder och verktyg för att kunna hantera säkerhetskulturen i organisationer som konstruerar och implementerar automatiserade fordon och maskiner. Projektet kommer att utforska befintlig säkerhetskultur och nya risker, samt utveckla mätinstrument för säkerhetskultur och pröva hur de kan appliceras på hållbarhet- och jämställdhetskultur. Säkerhetsfokus har länge legat på fordon och förare. Nu behövs organisationens och kundens betydelse lyftas fram. I projektet kommer därför en modell och verktyg utarbetas för att integrera säkerhetskultur i utvecklingsarbetet och för att stötta en lärandeprocess. Modellen utvecklas och utvärderas på två fallstudier från olika domäner, dels autonoma truckar samt automatiserade bussar i projektet Ride the future. En viktig aspekt av projektet är kunskaps och metodiköverföring mellan de olika tillämpningarna och mellan parterna VTI, RISE, Volvo GTT, Combitech och Toyota material handling. Projektet finansieras av Vinnovas FFI-program och genomförs på två år under ledning av VTI. Kontaktperson: Christina Stave (christina.stave@vti.se).

Studie om lastbil-VRU interaktioner inom FFI-projekt. Inom ramarna för FFI-finansierade projektet ”Externa interaktionsprinciper för förtroende och acceptans av tunga autonoma fordon” som bedrivs av Scania, RISE och Högskolan i Halmstad har doktoranden Victor Fabricius och kollegor publicerat en vetenskaplig tidskriftsartikel ”Interactions Between Heavy Trucks and Vulnerable Road Users—A Systematic Review to Inform the Interactive Capabilities of Highly Automated Trucks”. Artikeln syftar till att ge en översikt av den vetenskapliga litteraturen gällande dagens interaktioner mellan tunga lastbilar och oskyddade trafikanter – mer specifikt fotgängare och cyklister. En av insikterna från studien är att en stor del av interaktionen består av implicit kommunikation som till exempel fordons körsätt och rörelsemönster, och att den här typen av kommunikation i framtiden troligtvis kommer utgöra grunden även för interaktioner med automatiserade fordon. En annan insikt från studien är också att explicit kommunikation, i form av exempelvis ljussignaler på lastbilen i syfte att förtydliga lastbilens avsikter och handlingar, kan vara till nytta för interaktionerna. Utformning och nyttan av sådan kommunikation undersöks vidare i projektet som pågår fram till mitten av oktober 2022. Kontaktpersoner: Yanqing Zhang (yanqing.zhang@scania.com) och Daban Rizgary (daban.rizgary@ri.se)

Autonomous vehicle interactions in the hub. Scania, RISE, Boliden and Icemakers are working together in a research project “In the Hub – Samspel mellan operatörer och förarlösa fordon i framtidens transportsystem” funded by FFI. The aim is to investigate how natural interaction technologies can be integrated into autonomous transport systems to facilitate efficient and engaging experience in the hub contexts. An exploratory study have examined the potential of using verbal interaction and augmented reality (AR) to facilitate collaborations between professional human operators and unmanned self-driving heavy vehicles. Concepts that support operators in loading situations were designed and evaluated with forklift operators and rock-loading operators during a video-based study. Overall, the concepts received high scores in perceived efficiency and user experience. The results from the forklift operators supported the idea that more natural and social verbal interaction between operators and unmanned vehicles could lead to increased trust and acceptance compared to using simple voice commands. However, the results from the rock-loading operators showed that extensive use of voice interaction could become disturbing. The exploratory study thus supports the potential of using and further exploring verbal interaction and AR to facilitate human operators’ collaboration with self-driving vehicles, and the proposed concepts provide promising examples of interaction models for further investigation and implementation. The results have been presented in a paper which will be published in the conference “Applied Human Factors and Ergonomics” this year. Contact person: Yanqing Zhang (yanqing.zhang@scania.com) and Johan Fagerlönn (johan.fagerlonn@ri.se)

Heavy Automated Vehicle Operation Center (HAVOC) – Requirements and HMI design is a recently completed FFI-funded research project conducted by RISE and Scania with the following final project summary: Development trends suggest that, in spite of the optimistic announcements made by some stakeholders a few years ago, there are still technological challenges and regulatory constraints making heavy automated vehicles (HAVs) dependent on human control. Indeed, most HAV still require a human safety operator in the vehicle, and automated driving without a human “fallback” might be distant. At the same time, having a human safety operator in the vehicle jeopardises major anticipated benefits of HAVs – transport safety and efficiency. To bridge this gap, stakeholders are exploring remote operation technology, which enables HAV to be remotely operated by a human operator to some extent. The purpose of the HAVOC project was to study operator work and HMI for remote monitoring and control of heavy autonomous vehicles. The aim was to answer the following research questions:

  • What requirements are imposed on people and heavy vehicles for assessment, assistance, and driving?
  • What is required to scale the ratio between the number of operators and the number of monitored vehicles?
  • How should operator work be designed for transitions between assessment, assistance, and driving?
    A simulator was developed in Unity game engine with corresponding 3D-world and operator HMI to enable exploration of remote operation of ten vehicles in parallel. In a user study, 15 participants were invited to work for 1.5 hours and evaluate the system and work in terms of human-automation interaction. Human factors and HMI requirements were elicited for remote assessment, remote assistance, and remote driving operator tasks. The results show the importance of taking a systems perspective in developing and implementing remote operation control centers. See this link for an overview of the study and its results.
  • One of the major takeaways from the user study and the HAVOC project is the importance of a systems perspective in the analysis and design of future remote operation centers. The answer to questions such as “How many operators are needed?, How many vehicles can be monitored and controlled?, What is the best HMI?, What are the most important operator tasks?”  etc., will always rely on the dependencies between multiple human, technical and organizational factors. The ability to deal with the dependencies between factors such as operators’ skills and knowledge, operator tasks and training, HMI, vehicle capabilities, operational context, etc., lies in defining the envisioned work system and deciding what to design for. If a viable business case for remote operation is an operator:vehicle ratio of 1:1, 1:10 or 1:100 will place very different demands on overall human-automation systems design and work organisation. In this project, we have only considered single operator work. In a real application, teamwork between remote operators, traffic planners, and field personnel can be expected, further stressing the socio-technical systems approach. Contact person: Jonas Andersson (Jonas.andersson@ri.se)

Resultat från Självkörande landsbygd

Projektet Självkörande landsbygd har precis avslutats [1]. I projektet har man utifrån behoven, tekniken och infrastrukturen, samhällsnyttan samt rollerna och ansvaren tagit fram ett underlag för upphandling av autonoma fordon för användande i kollektivtrafik på landsbygden. Genom intervjuer, workshops och en förfrågan om information (RFI, se Appendix B i rapporten) har projektet undersökt frågan utifrån fyra konkreta områden i Sverige – Lund, Gotland, Eskilstuna och Skellefteå. 

Med en definition av landsbygd baserad på individens mobilitet (sid 11 i rapporten) har studien kommit fram till att Sveriges landsbygd rymmer mindre orter på väg att avfolkas där äldre, barn och de utan körkort hade kunnat få bättre tillgång till samhällelig service med autonoma fordon (sid 37). Studien har också identifierat att flera av landets nya arbetsplatser kommer befinna sig på landsbygden och därmed skapa ett mobilitetsbehov från staden till landet (sid 51). 

För att kunna realisera de identifierade möjligheterna finns ett behov av att framföra fordonen i högre hastigheter samt att de ska kunna hantera mer komplexa trafiksituationer än vad dagens piloter med autonoma fordon i städerna visat (sid 55-57). Samtidigt påpekar studien att man inte ska förvänta sig att investeringarna i autonoma fordon kommer betala sig på en linje, snarare behöver man lyfta blicken och se systemeffekten när stomlinjetrafiken blir mer attraktiv då bussarna går raka vägen istället för via mindre samhällen (sid 25). 

Studien har inte sett några belägg på att den digitala infrastrukturen behöver utvecklas för att möjliggöra försök med autonoma fordon på någon av de undersökta rutterna. Dagens 4G-täckning är fullgod och fordonen borde ha tillgång till tillräckligt bra positioneringsdata för att bedriva verksamheten. Däremot ställs flera frågor om hur ersättningstrafiken organiseras när fordonen inte klarar av vädret, vem som står för säkrare hållplatser och hur chaufförens övriga ansvar realiseras när fordonet är förarlöst. 

Projektet har letts av RISE och genomförts i samarbete med Ramboll, Trafikverket, Lund, Gotland, Eskilstuna och Skellefteå. Projektet har finansierats av VINNOVA via Drive Sweden.

Egen kommentar

Det har varit ett roligt projekt att få vara med i. Mycket för att det finns så många engagerade människor som vill se en annan utveckling för Sveriges landsbygd, men också för att det blev så tydligt att den där mentala bilden med den slingrande grusvägen bara berättar en väldigt liten del av möjligheterna och utmaningarna med mobilitet på landsbygd. Jag blev nog mest överraskad av att Eskilstuna Logistikpark ligger på landsbygden och mest nöjd med diskussionerna vi haft kring hur investeringarna i nya fordon kan motiveras. Eller inte. På vissa platser är det nog rimligare att leta efter andra lösningar tills det går att leverera en hållbar tjänst.

Källor

[1] Burden et al, 2021. Självkörande landsbygd. Länk

Guldkorn från svensk forskning

Dessa guldkorn är bidrag från våra läsare – stort tack för det, och för all fantastisk forskning och utveckling som ni gör. Keep up the good work!

iQ-Pilot & iQ-Mobility. These are two recently finished projects co-funded by the Strategic vehicle research and innovation programme (FFI). The focus of the projects was development of new technology to realize flexible, energy-efficient transport solutions in cities. Several proof-of-concept prototypes have been developed and demonstrated, including autonomous buses and a smart coordination system for bus fleets. The research results were presented in a webinar earlier this week. These results are the joint efforts of Scania, Ericsson, INIT, Veoneer, Royal Institute of Technology (KTH) and Örebro University. 

Human interaction with autonomous minibuses. Tom Ziemke’s research group at Linköping University, in collaboration with researchers at VTI, will during the autumn start a new research project on people’s interaction with autonomous minibuses on campus. The research will focus on method development and empirical studies of how pedestrians, bicyclists and car drivers interact with the buses. A two-year postdoc position is available via this link (application deadline: August 5). For more information contact Tom Ziemke (tom.ziemke@liu.se).

GLAD – Goods delivery under the Last mile with Autonomous Driving vehicles. Small autonomous electric delivery vehicles (ADV) are expected to transform transportation of goods under the first and last mile. The advantages are increased transportation and energy effectiveness, but it is also important that these vehicles are safe and accepted in society. The aim of the GLAD project is to develop an initial knowledge base on efficiency, safety and human experience of ADVs for the first and last mile delivery of goods in Sweden, and on how to create a balance between these three aspects from a socio-technical perspective. To achieve this, the project will utilize Zbee vehicles that will be adapted in terms of vehicle design and autonomous vehicle behaviour, human-machine interface, teleoperation and vehicle management. The overall goal is to develop knowledge that accelerate introduction of new efficient goods delivery in our society and contributes to meeting the goals of Agenda 2030. This will be assured also by connecting a licentiate candidate to the project. The project is co-funded by Trafikverket and involves RISE, Halmstad University, Aptiv, Combitech and Clean Motion. It started in June 2020 and will run for ca 2 years. For more information contact azra.habibovic@ri.se.

Tactical Decision-Making in Autonomous Driving by Reinforcement Learning with Uncertainty Estimation. Reinforcement learning (RL) can be used to create a tactical decision-making agent for autonomous driving. However, previous approaches only output decisions and do not provide information about the agent’s confidence in the recommended actions. This paper investigates how a Bayesian RL technique, based on an ensemble of neural networks with additional randomized prior functions (RPF), can be used to estimate the uncertainty of decisions in autonomous driving. A method for classifying whether or not an action should be considered safe is also introduced. The performance of the ensemble RPF method is evaluated by training an agent on a highway driving scenario. It is shown that the trained agent can estimate the uncertainty of its decisions and indicate an unacceptable level when the agent faces a situation that is far from the training distribution. Furthermore, within the training distribution, the ensemble RPF agent outperforms a standard Deep Q-Network agent. In this study, the estimated uncertainty is used to choose safe actions in unknown situations. However, the uncertainty information could also be used to identify situations that should be added to the training process. The paper will be presented at the Intelligent Vehicles Symposium (IV) in October 2020, and a preprint is available on arXiv. The code that was used is also available on GitHub For more information, contact Carl-Johan Hoel (carl-johan.hoel@volvo.com) at Volvo Autonomous solutions. This work was partially supported by the Wallenberg Artificial Intelligence, Autonomous Systems and Software Program (WASP), funded by Knut and Alice Wallenberg Foundation, and partially by Vinnova FFI.

Autonomous Mapping of Unknown Environments Using a UAV. As part of the research conducted within the project LASH-Fire (Eu-Horizon 2020, No.814975), RISE supervised the work of Chalmers students developing an automatic object search for indoor environments using a flying drone. At the core of this system a reinforcement learning (RL) algorithm was implemented for the drone to navigate, detect obstacles, recognize objects and explore the environment. This machine learning (ML) project marks a starting point for further development towards an autonomous identification and surveillance solution in a wide range of study cases where cargo ships, like the ones studied in LASH-Fire, are an ideal target application. A modularized approach was used targeting research areas such as obstacle avoidance, object detection & recognition, simultaneous localization and mapping, etc. The exploration module was specially challenging and will require further work but the project in general was successful in providing a methodology and tools when using flying drones for indoor environments. The Master’s thesis was conducted by Erik Persson and Filip Heikkilä, and is available via this link. For more information contact boris.duran@ri.se

Projektet ESPLANADE, som började 2017 och avslutades sista mars 2020, handlade om hur man visar att ett automatiserat fordon är säkert. Det finns flera problem som måste hanteras för att man ska kunna göra en komplett säkerhetsargumentation. Projektets resultat inkluderar därför nya metoder för säkerhetsargumentation för en ADS, några av dessa är: 

  • En process för säkerhetsanalys samt designprinciper för interaktionen när en människa överlämnar kontrollen över ett fordon till en ADS eller tvärtom. Processen innehåller existerande metoder som sekvensdiagram, orsak-konsekvensanalys och felträd, men applicerade på människa-maskininteraktion istället för enbart tekniska system
  •  Hur man definierar den operativa designdomänen (ODD) för en ADS utgående från önskade användningsfall, vilket innebär en definition av parametrar inom vilka en ADS-funktion är avsedd att fungera, samt strategier för att säkerställa att fordonet håller sig inom sin ODD.
  • En metod (kallad QRN) för riskanalys och framtagande av säkerhetsmål. Till skillnad från vanliga riskanalysmetoder bygger den inte på analys av specifika situationer utan på definition av acceptabel frekvens av incidenter med olika allvarlig konsekvens, och en mappning av incidenter till olika klasser av konsekvenser. Säkerhetsmålen uttrycks så att man säkert hamnar inom acceptabla frekvenser.
  • Ett ramverk för formell och systematisk hantering av säkerhetskrav med en kombination av åtgärder under utveckling och under drift, bland annat baserat på modeller av osäkerhet.
  • Användning av metoden funktionsanalys för att distribuera beslutsfattande på en ADS-arkitektur samt framtagande av säkerhetskrav.
  • Säkerhetskontrakt och komponentbaserad design för att underlätta kompletthetsbevisning i kravnedbrytning, möjliggöra kontinuerlig produktuppdatering, samt kunna uttrycka säkerhetskrav för sensorsystem som inkluderar kamera, radar mm.

En publik rapport och länkar till de flesta av projektets publikationer finns på projekthemsidan.

Prepare Ships Project. Running for 26 months, the H2020 project “Prepare Ships”, funded by the European Global Navigation Satellite System Agency (GSA), was successfully started in December 2019. The 5 consortium partners, coming from 3 European countries have developed a machine learning based future position prediction for ships in order to avoid ship collisions and close quarter situations as well as reducing environmental impact by more advanced decision making. In a RTK (Real Time Kinematic) software solution, it will both exploiting the distinguished features of Galileo signals as well as combining it with other positioning and sensor technologies. It will use the next generation maritime communication techniques VDES and the new suit of IALA Standards (S100) on sea charts. The innovation developed during the project can make more autonomy of navigation feasible by exchanging future positions and allow eased decision making on ships, suitable to become an international game changer for the future of autonomous shipping. The demonstration and testing will be done onboard three different vessels in the Gothenburg archipelago. The project is coordinated by RISE with partners from across Europe, including SAAB, Lantmäteriet, Telko and Anavs. For more information check out our homepage, join our linkedin group or contact Johannes Hüffmeier at RISE (johannes.huffmeier@ri.se).  

How do you ensure safety of autonomous shipping? Today’s risk assessment methods, application of methods and models used in shipping are usually based on humans being directly in charge of ships, VTS, port controls, etc. and may not be sufficient to reflect and evaluate the complexities and inherent risks of introducing further automation and digitalization in the shipping domain. The introduction of smart ships will create traffic situations between manned and unmanned ships where on one hand decisions and actions are based on algorithms and on the other hand by a human operator where a large part of the decision making. Increasing the level of automation implies that the goal-based standards for shipping need to be based on a risk assessment that reflects the expected roadmaps towards more smart ships and so far, research on autonomous transportation has focused on other parts than the effect of introducing and mixing different levels of automation and only very basic standards have been proposed by classification societies, where DNVs standards [DNV, 2018] have two pages in the appendix on basic set-ups for testing and validation. The main objective of the RFAF project financed by Trafikverket is to analyse how autonomous navigation can be proven to be safe. The aim of the project is to perform a simulator-based risk identification for autonomous shipping traffic. Increasing the level of automation implies that the goal-based standards for shipping need to be based on a risk assessment that reflects the expected roadmaps towards autonomy. Based on two use cases, the routes Fredrikshamn-Göteborg and crossing of the Ljusterö fairway, relevant risks are identified based on ship simulations performed by mariners describing especially nautical challenges for more autonomous shipping resulting in a common risk model. The project lasts from January 2020-December 2022. There are 3 project partners with RISE as coordinator. For more information visit the project website or contact Johannes Hüffmeier (johannes.huffmeier@ri.se).

The SWEA-financed (Energimyndigheten) Data-driven Optimised Energy Efficiency of Ships is a national project involving 7 ship owners, 3 companies from the supply chain and RISE, lasting for 16 months. The data analysis of energy consumption is often complex and there are different driving forces for decisions. However, increased data collection can be unprofitable if you do not have methods to analyze the complex systems. Developments within machine learning provides new opportunities to develop both technically and economically powerful tools energy efficiency. Even today, to some extent, economic driving is applied, for example. eco-driving, however, the effect is in many cases limited as decision-making is more complex than the operator / navigator can see. Also, not always available incentives and motivation of individuals to reduce energy use. However, data collection is increasing both quality review and analysis are not performed to the same extent. Using the results of the project’s data collection and analysis, recommendations can be given about which tools which can be developed in a next step, such as: a) nudging, decision support system or autopilot for ECO driving, b) route optimization based on the ship’s accelerations and motions, and c) decision support based on statistics or real-time analysis of data to identify optimal operation (parameters such as sea state, current, speed, load condition, etc.). The objectives of the project are to: a) Achieve reduced energy use on the project’s vessels by 10–35% both at quay and in sea operations, b) Demonstrate potential with machine learning of operational data, and c) Demonstrate the possibility that better operational data may form the basis for the development of generic energy efficiency tools for smaller vessels in commercial traffic. For any details on the project, reach out to Johannes Hüffmeier (johannes.huffmeier@ri.se).

Photonics Private Public Partnership Roadmaps for EU’s next Framework Program Horizon EuropéThe area of photonics for automotive applications is a significant area which includes not only photonics sensors for the EU defined topic Mobility and Safety for automated Road Transport. Photonics also plays a role in the path towards the targets of Zero Emission Road Transport, Clean Energy Transition, and the Industrial Battery Value Chain. The work of defining the Strategic Research Agenda (SRA) in the specific area of Photonics with EU industrial partners, universities and research centers is performed through the EU technology platform ”Photonics21”, which is funded by the EU commission. The current roadmap for Photonics was published in the document: “Europe’s age of light! How photonics will power growth and innovation, Strategic Roadmap 2021–2027” The section on Automotive and Transport can be found in section 3.9. The coordinator of the whole Photonics 21 is done by VDI Technologiezentrum GmbH in Düsseldorf, Link. We believe this is important as there are a lot of EU research money at stake. The current recommendation by the European Parliament for the whole Horizon Europe budget 2021 -2017 is €120 Billion. The research funding will be divided among many topics where Climate, Energy, and Mobility is one of the clusters. There is a large Swedish interest in the cluster and cooperation with industry is one important factor in the program. Most, if not all, of the European automotive industry are usually involved in at least selected programs.

Now, based on feedback from the new European Commission, the board of Photonic21 have decided to reshape the roadmap and as a consequence automotive & transport will henceforth be combined with the topics of climate and energy. Besides merging the different topics in one document, this gives us an opportunity to revise the previous document into something that we believe should support our industry even better, considering that the current document was prepared in 2018 and the present situation the industry is facing. We want to ensure that the guiding document capture the specific needs of the automotive industry. The aim of the work is to define the research topics of the Strategic Research Agenda (SRA) which will define the upcoming calls in the Horizon Europe program. 

We now invite comments on the current chapter and roadmap (provided in the link above). Determined by EU commission schedules this work has to be completed on 4 September, why we need your input no later than 24 August 2020. We ask for specific text suggestions and specific roadmap suggestions (compare with p. 140 in the above mentioned Strategic Roadmap). Please forward your suggestions to Jan-Erik Källhammer at jan-erik.kallhammer@veoneer.com. He acted as chair of the group Automotive and Transport in the current roadmap and now act as co-chair of the new group Climate, Energy, and Mobility together with Dr. Heinz Seyringer of V-Research GmbH in Austria. 

Metoder för att upptäcka okänd data utan inlärning

Machine Learning (ML) och speciellt Deep Learning (DL) har visat sig vara mycket effektiva och kraftfulla för att lära sig att känna igen mönster, beteende och egenskaper.

En känd egenskap hos ML är att algoritmerna kan vara extremt bra på data som finns inom den rymd som använts för träning, men extremt dåliga på data som ligger utanför träningsrymden. De är alltså bra på att generalisera, men sämre på att extrapolera. För att detektera data som ligger utanför träningsrymden, tränas ofta nätverk som lära sig se skillnad på ”känd data” och ”okänd data”, genom att presentera exempel från båda klasserna. Problemet är dock att det dels finns många dimensioner i datat (speciellt när indata är bilder) och dels blir det snabbt opraktiskt att samla data på objekt som inte är relevanta för nätverket.

Forskare från Georgia Tech och Samsung, har nyligen publicerat en artikel kring hur nätverk kan tränas, utan att använda data data som ligger utanför träningsrymden [1].

Artikeln presenterar en metod som använder sig av signaler som finns inne i ML nätverken. De skapar sannolikhesfördelningar över hur signalerna beter sig för de olika kända klasserna. Genom att jämföra dessa fördelningar med hur signalerna ser ut för ny data som presenteras för nätverket, lyckas de med hög säkerhet avgöra om den nya datan kommer ifrån den kända eller okända datarymden.

Egen kommentar

Denna metodik har studerats inom Vinnova FFI projektet SMILE II även där med stor framgång [2].

Källor

[1] Hsu, Yen-Chang, et al. ”Generalized ODIN: Detecting Out-of-distribution Image without Learning from Out-of-distribution Data.” arXiv preprint arXiv:2002.11297 (2020).

[2] Slutrapport SMILE II https://www.vinnova.se/globalassets/mikrosajter/ffi/dokument/slutrapporter-ffi/elektronik-mjukvara-och-kommunikation-rapporter/2017-03066eng.pdf

Svensk forskning: Framtiden är ljus

MICA. CoEXist. SMART. PLATT. PRoPART. PERCEPTRON. PRELAT. DENSE. Barmark. BRAVE, HATric. Ja, så heter några av projekten som ni har äran att läsa om i årets sista sammanställning av relevant svensk forskning. För varje gång blir jag mer och mer imponerad av vår forskning och forskare. Det är fantastiskt att se hur mycket görs i vårt ”lilla” land, och det här är nog bara en bråkdel av det hela! Vi behöver bara bli bättre på att sprida våra resultat, och jag hoppas att OmAD bidrar till detta. Något annat vi behöver bli bättre på är att koppla samman våra projekt till en helhet och visa hur de leder till positiva samhällsförändringar. Kanske ett lämpligt nyårslöfte?

Stort tack till er alla som bidragit till den här sammanställningen! Det hade inte varit möjligt utan era bidrag och engagemang.

Modeling driver behavior in interactions with other road usersDriver models help improve and evaluate systems for road crash mitigation and avoidance. As systems develop and address increasingly complex scenarios. Driver models also need to be developed to be able to account for the interactions among these road users. Even as we improve driver modeling with control-theory models and actual data-driven implementations, existing driver models fail to sufficiently take interaction among road users into consideration. This paper addresses this insufficiency by proposing a new operational framework to computationally model interactions among road users. For this purpose, we introduce a definition for interaction among road users. The modeling framework is demonstrated by a specific driving scenario: the overtaking of a cyclist when an oncoming vehicle may be present. In this scenario, modeling driver interaction using Unified modeling language within our framework can lead to improved crash mitigation and avoidance through tailored system activation of automated emergency braking. This is a paper that will be presented at TRA-conference next year. The work was partly carried out at SAFER and within the FFI-project Modelling Interaction between Cyclists and Automobiles (MICA). For more information contact Prateek Thalya at Veoneer (prateek.thalya@veoneer.com).

Researchers from Veoneer have also published several other relevant papers, contact Ola Boström (ola.bostrom@veoneer.com) at Veoneer for more information: 

  • Occupant activities and sitting positions in automated vehicles in China and Sweden – The 26th International Technical Conference on the Enhanced Safety of Vehicles (ESV)
  • Passenger Car Safety Beyond ADAS: Defining Remaining Accident Configurations As Future Priorities Conference: The 26th International Technical Conference on the Enhanced Safety of Vehicles (ESV)
  • Intersection AEB Implementation Strategies for Left-Turn Across Path Crashes – Traffic Injury Prevention (ADAS)
  • A Model of Indian Drivers’ Ratings of In-Vehicle Alerts to Pedestrian Encounters on Roads in India, for presentation at the coming Human Factors and Ergonomics Society’s 2019 International Annual Meeting
  • Benefits of intuitive auditory cues for blind spot in supporting personalization; ESV2019
  • Adaptive Transitions for Automation in Cars, Trucks, Busses and Motorcycles; Intelligent Transport Systems (got invited for a journal track after the ITS World Congress)
  • How do oncoming traffic and cyclist lane position influence cyclist overtaking by drivers? – Shown at ICSC and submitted to AAP journal
  • Radar Interference Mitigation for Automated Driving – IEEE Signal processing magazine
  • How do drivers negotiate intersections with pedestrians? Fractional factorial design in an open-source driving simulator – AAP
  • Modelling discomfort: How do drivers feel when cyclists cross their path? – AAP

Driver/passenger activity mapping. FFI funded DRAMA project (2018-2020) addresses knowledge building around activity identification of drivers and passengers in vehicles to improve interaction between them and the vehicle. Mapping and detecting activities at drivers and passengers is important for both UX and traffic safety. With knowledge about activites, the HMI can be adjusted to, the currently most efficient modality. If the vehicle knows the body posture of the passengers safety functions such as airbags, brakes and steering system can be adjusted by the safety systems in the vehicle. The project develops a system that can recognizes individual and interaction activities of driver and passengers in vehicles of high level of automation (SAE3+). The project studies from literature the most relevant activities of driver and/or passenger in highly automated vehicles in terms of safety and comfort. The developed prototype acquires input data from multiple cameras mounted in the cabin of a vehicle and classify the detected activities according to the chosen in-cabin activities of interest. Machine learning algorithms are used to extract timeseries of activity features including: Body poses, head position/eye gaze/face landmark, objects, dense optical flow, and detected activity/interaction. The work is a collaboration between RISE AB and Smart Eye AB. For more information contact Thanh Hai Bui (thanh.bui@ri.se) at RISE, or Henrik Lind (henrik.lind@smarteye.se) at Smart Eye AB.

Mimicking professional bus drivers. Scania and KTH Royal Institute of Technology are currently researching motion planning algorithms for autonomous buses driving in cities. The research has so far discovered that current motion planning approaches, which are suitable for passenger vehicles, are not successful at driving buses in cities. The problem arises due to the large dimensions of buses, but mostly due to the particular chassis configuration, where the wheelbase length is much shorter than the vehicle length, resulting in large vehicle overhangs. The research then focuses on how to use these overhangs to increase the maneuverability of buses driving in cities. The result is a new motion planning approach which allows buses to briefly drive with the overhangs outside of the road and over curbs, in order to drive along narrow roads and sharp turns, while ensuring the safety of the drive. The first results of this work have been recently published in the Intelligent Transportation Systems Conference 2019. The paper can be accessed via IEEE here, or arXiv here, and a video of the results here. This work was partially supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation. For more information contact Rui Oliveira (rui.oliveira@scania.com) from the KTH Royal Institute of Technology.

CoEXist is a European project (May 2017 – April 2020) which aims at preparing the transition phase during which automated and conventional vehicles will co-exist on cities’ roads. CoEXist aims at enabling mobility stakeholders to get “AV-ready” (Automated Vehicles-ready). To achieve its objective, CoEXist have developed an assessment framework including both microscopic and macroscopic traffic models that take the introduction of automated vehicles into account. The tools developed in the framework of CoEXist are tested by road authorities in the four project cities: Helmond (NL), Milton Keynes (UK), Gothenburg (SE) and Stuttgart (DE) in order to assess the “AV-readiness” of their local-designed use cases. Swedish partners in the CoEXist project is VTI and the City of Gothenburg. Preliminary results from the traffic modelling show decreases in traffic performance in an introductory stage with lower penetration rates and AVs with limited capabilities and cautious driving logics while higher penetration rates of more advanced AVs leads to a modal change from public transport to private cars. Final event will be held in Milton Keynes (UK) on 25-26 March 2020, Homepage: https://www.h2020-coexist.eu/. Contact Johan Olstam (johan.olstam@vti.se) for more information.

SMART. The aim of the SMART project (Simulation and Modelling of Automated Road Transport) is to enhance and further develop todays state-of-the-art traffic models in order to enable analysis of future traffic systems. The project consists of two PhD projects, one focusing on microscopic traffic simulation and the behaviour of and interaction between conventional and automated vehicles, and one focusing on mesoscopic simulation and fleets of automated vehicles for public transport operations. The licentiate thesis Simulation based evaluation of flexible transit was presented by the PhD student David Leffler on June 13th, 2019. The project is carried out by VTI, KTH and LiU and is funded by Trafikverket via Centre for Traffic Research (CTR). Contact Johan Olstam (johan.olstam@vti.se) or Wilco Burghout (wilco@kth.se) for more information.

PLATT – Policylab för Autonoma Transporttjänster. Inom ramen för DriveSweden (Vinnova) har PLATT har Volvo GTT, Einride, Combitech och RISE bedrivit policyutveckling tillsammans med offentliga och kommersiella aktörer inom transportnäringen. Därigenom har vi identifierat en rad utmaningar som de sökande står inför. Det handlar både om att kunna budgetera för ansökan i form av kostnad och ledtid men också hur man vet vad som ska ingå i en ansökan. Men vi har också sett en rad olika strategier för att hantera den osäkerheten. Dels beprövade strategier som använts både specifikt inom fordonsutvecklingen och generellt inom svensk myndighetsutövning, dels nya strategier som sätter fingret på hur man kan hantera säkerheten vid införande av ny teknologi utan att hämma innovationstakten. Genom att bjuda in brett till projektets aktiviteter har vi också samlat på oss många praktiska tips på hur man som sökande både kan påverka hur lång tid det tar att få igenom en ansökan men också mängden arbete man behöver lägga ner på en framgångsrik ansökan. Tipsen belyser också aspekter som inverkar gynnsamt på hur försöksverksamheten uppfattas av omvärlden, t.ex. räddningstjänsten och allmänheten. Här hittar ni slutrapporten och projektets hemsida. För mer information kontakta Håkan Burden på RISE (hakan.burden@ri.se). 

Driving automation state-of-mind: Using training to instigate rapid mental model development. I takt med att automatiserade funktioner blir alltmer avancerade och vanliga, ökar också kraven på användarens (förarens) förståelse för korrekt användning. Inte förrän den mänskliga föraren helt kan ersättas kommer förarens förståelse av systemen vara en kritiskt komponent i att fordonet (människan tillsammans med de automatiserade systemen) framförs säkert på vägen. Finns det då något sätt att snabb-träna förare i hur man ska använda sådana system? Den nyligen publicerade studien ämnade undersöka just detta. Tidigare forskning inom förarträning och inlärning kombinerades till en tränings-metodik som sedan inkorporerades i ett träningsprogram ämnad att träna noviser i användningen av ett hypotetiskt förarassistanssystem motsvarande SAE Level 2. Resultaten indikerade inte bara att automations-träning av förare är möjlig, utan kanske viktigast av allt att de tränade förarna i betydligt större utsträckning var benägna att ingripa i situationer som krävde det (baserat på systemets begränsningar) jämfört med deras otränade motparter. Studien gjordes inom ramen för FFI-projekt HATrick. För mer information kontakta Martin Krampell (krampell@gmail.com).

PRoPART finalized. After 24 months of work, H2020 project „PRoPART”, funded by the European Global Navigation Satellite System Agency (GSA), was successfully closed. The 7 consortium partners, coming from 4 European countries have developed an RTK (Real Time Kinematic) software solution by both exploiting the distinguished features of Galileo signals as well as combining it with other positioning and sensor technologies. RTK gives the possibility of cm-level accuracy using correction data from reference stations. The innovation developed during the project can be a game changer for the future mass market of autonomous transport. The final demonstration was done in November at AstaZero and here you can see a movie and presentation material. The project was coordinated by RISE with partners from across Europe, including Scania, AstaZero and Waysure. For more information contact Stefan Nord at RISE (stefan.nord@ri.se).  

PERCEPTRON är ett FFI-projekt är ett samarbete mellan Volvokoncernen, Semcon och Chalmers som avslutas nu vid årsskiftet. Målsättningen med PERCEPTRON har varit att ta fram ett koncept för kontinuerlig datadriven utveckling vilket inbegriper infrastruktur för att ta hand om loggad data, design av neurala nätverk, träning och validering. Ett resultat av projektet är tre neurala nätverk att exekvera i fordonet för objektdetektering, detektering av filmarkeringar och vägdetektering. Nätverken har tränats på insamlad och annoterad data för lastbil på svenska vägar. En översiktlig utvärdering av hårdvara och programvara för användande neurala nätverk har också gjorts för att ge vägledning åt utvecklare. För ytterligare information kontakta projektledare Carlos Camacho, Volvokoncernen.

PRELAT är ett FFI-projekt som slutar vid årsskiftet efter fem års samarbete mellan Volvokoncernen och Chalmers. Projektet har arbetat med fully convolutional neural network för fusion av kamera och lidar i syfte att uppnå robust vägdetektion och klassificering av vägmarkeringar för lateral filhållning. Ett tidigt resultat pekar på nyttan av använda lidar för snabb och noggrann vägdetektion. Ett annat resultat från PRELAT är på vilken detaljnivå fusion av kamera och lidar bör utföras. Slutligen är ett tredje resultat hur semi-supervised training kan utformas i syfte att minska mängden kostsam annotering. PRELAT och PERCEPTRON har varit en del av den snabbt expanderande utvecklingen och användningen av neurala nätverk inom fordonsindustrin. Resultaten har bidragit med ökad förståelse och kommer att användas i framtida projekt i Volvokoncernen. För ytterligare information hänvisas till projektledare Martin Sanfridson, Volvokoncernen

Universally designed mobility for increased accessibility to societal functions. A consortium of organisations in West Sweden (Västra Götalandsregion, Västtrafik, RISE, Norconsult Astando AB, with user organisations SRF and DHR) have collaborated on a number of projects with the vision of working towards autonomous and universally designed mobility for increased accessibility to societal functions. A series of projects performed by the consortium have explored the following subjects:

  • Samverkande system för sjukresor och sjukhus (eng. Cooperative systems for medical journeys and hospitals). How a System-of-systems approach can be utilised to bridge accessibility gaps when making service journeys between public transport and hospital departments. (funded by Vinnova FFI)
  • Autonoma skyttelbussar för ökad tillgänglighet till viktiga samhällsfunktioner (eng. Autonomous shuttle busses for increased accessibility to important societal functions). Pre-study for a trial of autonomous shuttle-busses at Sahlgrenska Hospital in Gothenburg. (funded by Västra Götalandsregion kollektivtrafiknämnden)
  • Guidning till autonoma fordon för blinda, döva och dövblinda (eng. Guidance to autonomous vehicles for persons with blindness, deafness and deaf-blindness) Guiding for journeys with autonomous vehicles for people with blindness, deafness and deaf-blindness. (funded by Drive Sweden – Vinnova, Energimyndigheten och Formas)

A combination of methods including design-thinking workshops, user-trials, field studies, service-design methods and innovation processes have been utilised to ensure that user needs have been clearly understood and taken into consideration in design of potential solutions. The studies have resulted in increased understanding of the needs of users with visual impairments in autonomous transport systems and how public authorities can contribute to designing services that reduce barriers to independent travel. A large number of service improvements and solutions have been identified. Methods for using vibro-tactile communication to guide users with visual impairments to public transport have been evaluated. A plan for a one year test of autonomous busses in a hospital environment is undergoing an approval process within the regional authority. The insights gained from these projects have already begun to create value. Many solutions can be applied to existing public transport solutions. However to create future transport solutions which are created with accessibility for all from the outset, the results require more communication for example to vehicle manufacturers, city and public transport planners and more. For more information contact Steve Cook at Norconsult (Steve.Cook@norconsult.com). 

What happens to self-driving cars if the weather turns bad? Current systems offer comfort and safety in good weather. However, they often fail to sense its surroundings in visibility conditions with heavy rain, snow or fog causing the automated systems to stop their support. The DENSE project, under the ECSEL joint undertaking and co-financed by EU and national funding bodies, addresses this key challenge of autonomous driving by developing an environment perception technology that extends the performance of sensors in adverse visibility conditions. The project designs, tests and validates a generic sensor suite that enables driver assistance systems and autonomous driving systems to operate also in adverse weather. The DENSE 24/7 all-weather sensor suite combines Radar, Short-Wave Infrared (SWIR), gated camera sensor, and LIDAR. In addition, a mobile Road State Sensor assesses the road surface conditions. For maximizing efficiency, DENSE implements a high-level fusion platform integration between the individual sensors. DENSE use artificial neural networks to fuse all sensor information at pixel level, leading to an enriched and enhanced multi-spectral image. The system has been integrated in a test vehicle and demonstrated under controlled conditions in a weather chamber and evaluated under real-life conditions in Central and Northern Europe. Project duration is between June 2016-February 2020. There are 15 project partners with Daimler as coordinator. For more information visit the project website or contact Jan-Erik Källhammer at Veoner (jan-erik.kallhammer@veoneer.com).

Projekt Automatiserad vägdrift med kortnamn ”Barmark” har som målsättning att genom automatisering av drift- och underhållsfordon bidra till förbättrad arbetsmiljö, ökad resiliens samt minskade säsongsvariationer vid val av transportslag. Projektet tar fram ett fordon som kör och navigerar självständigt längs en definierad rutt samtidigt som det utför ett arbetsuppdrag och interagerar med omgivningen. Inom projektet sker fordonsanpassning exv. av bromssystem, midja och EHI styrning, utveckling och anpassning av sensorsystem exv. drönarburna radarsystem, ultraljud, GPS/Video samt utveckling och anpassning av webbaserad front-end med loggning av fordon med förare i trafik. Vidare utförs analys av infrastruktur och testscenarier inför projektdemonstrationer som kommer utföras kommande vinter- och sommarsäsong. Projektgruppen utgörs av RISE, Semcon, CIT, Peab, Swevia, Skanska, Svensk Markservice, Trafikverket, Alkit, Teade, AstaZero och Lundberg Hymas, där RISE är koordinator. Projektet pågår 2018-05-01 till 2020-08-30 och finansieras av det strategiska innovationsprogrammet InfraSweden2030, en gemensam satsning av Vinnova, Formas och Energimyndigheten samt av projektpartners. For mer information kontakta Viveca Wallqvist på RISE (viveca.wallqvist@ri.se). 

Användargränssnitt för att upptäcka oskyddade trafikanter I syfte att förbättra tilltro och acceptans för SAE nivå 3. I EU-projektet BRAVE, Bridging gaps for the adoption of Automated VEhicles som koordineras av VTI, Statens väg- och transportforskningsinstitut, bedrivs forskning för att bidra till förbättrad säkerhet och acceptans av automatiserade fordon. I projektet har VTI under hösten genomfört en studie i körsimulatorn Sim IV på Lindholmen i Göteborg. Bakgrunden till studien är att implementering av automatiserade körsystem på SAE nivå 3 i urbana miljöer utgör en utmaning, i det att återkommande och svårförutsägbara interaktioner mellan fordon och oskyddade trafikanter behöver hanteras. För att adressera utmaningen har projektet utvecklat ett koncept för användargränssnittet som håller föraren informerad om närvaron av oskyddade trafikanter i den närliggande omgivningen. Genom att göra denna typ av information tillgänglig för föraren ges hen möjlighet att avsluta uppgifter av sekundär karaktär, såsom att se på film och liknande, och i samarbete med systemet övervaka körningen fram till dess att det är säkert att återgå till sekundära uppgifter. I körsimulatorstudien fick deltagare med och utan erfarenhet av supportfunktioner på SAE nivå 2 köra i en urban miljö samtidigt som dom kunde titta på film. Nivån av information angående oskyddade trafikanter varierades över fyra betingelser: (1.) ingen information, (2.) en varning för att förmå föraren att återta kontroll när en kollision var nära förestående, (3.) en förvarning som meddelade om närvaron av oskyddade trafikanter, samt (4.) kombination av varnings- och förvarningskoncepten. Studiens resultat visar att en strategi för användargränssnittet som integrerar förvarnings- och varningsmeddelandet är den lösning som är att föredra för att förbättra säkerheten, samtidigt som förarens tilltro till systemet förbättras. Vidare visade studien att tidigare erfarenhet av SAE nivå 2 är avgörande för om strategin fungerar eller inte. Resultaten stödjer design av användargränssnitt för automatiserade körfunktioner baserat på behov, preferenser och förmågor hos förare för att säkerställa bättre acceptans och säkerhet. För mer information om projektet kontakta Niklas Strand, Ignacio Solis Marcos eller Ingrid Skogsmo på VTI eller se www.brave-project-eu eller följ projektet på Twitter @BRAVE_H2020 

Drive Me: Automation, olycksrisker och trängsel

Drive Me, som är ett Vinnova och FFI finansierat projekt där Trafikverket och Volvo Cars Corporation varit samarbetspartners, har nu publicerat två rapporter: ADEST och ADFE. Den förstnämnda behandlar frågor kring autonom körning relaterat till hållbara transporter och den sistnämnda belyser frågor kring autonom körning och energieffektivitet [1].

Trafikverkets medverkan är nu avslutad med dessa två publikationer och slutsatserna från deras insats visar på om flera intressanta prognoser. Fyra arbetspaket har ingått i projekten: testprober, trafiksäkerhet, trafikflöde och energieffektivitet. Intressant för undersökningarna i dessa projekt är att man använt naturalistiska testdata från en 30 km lång provsträcka i Göteborg (ringleden) med hastighetsgränser 70km/h och 80km/h. Fordonen som använts begränsades kapacitetsmässigt till att köra automatiserat med övervakning, där automatiserad körning som funktion endast var tillgänglig under vissa trafikförhållanden. Beslutet för att inte använda så kallad oövervakad automation togs av säkerhetsskäl. Notera att trafikförhållandena för undersökningarna var goda och beskrivs som torrt väglag, bra väder och bra väderförhållanden. 

I studierna användes data från verklig körning, data från olyckor och incidenter och trafiksimuleringar.

Några av slutsatserna från projekten är bl.a att en 20% ökning av autonoma fordon på vägarna visas kunna minska olycksrisker men samtidigt försämra trängseln i trafiken. Anledningen till försämring av trängseln är att autonoma fordon är mindre effektiva i att lösa upp köer än mänskliga förare. Det här innebär att trots förbättrad energieffektivitet med autonoma fordon i körningen så ser man samtidigt även en försämring i energiförbrukning genom ökad köer. 

Trots de nackdelar som tas upp i artiklarna så lyder slutsatsen att stora säkerhetsfördelar kan förväntas med ökning av automatiserade fordon. 

Egen kommentar

Det är intressant att man kommer till slutsatsen att fler AV’n leder till försämrade kö-tillstånd i trafiken. Det här togs även upp i artikeln vi skrev om förra veckan från MIT [2], men där man även tog hänsyn till att kollektivtrafiken automatiseras, vilket bör skapa en mer komplicerad uträkning. Sedan är frågan också beroende på till vilken utsträckning folk väljer kollektivtrafik med autonoma fordon, eller autonoma personbilar (utan samåkning) i framtiden.

Källor

[1] Ökad automation minskar olycksrisken men kan öka köerna, Trafikverket 2019-11-27 Länk

[2] MIT Energy Initiative. 2019. Insights into Future Mobility. Cambridge, MA: MIT Energy Initiative Länk

Drive Sweden Forum 2019

I går 12 september gick årets Drive Sweden Forum av stapeln med ca 270 deltagare. Drive Sweden är ju ett av 17 strategiska innovationsprogram (SIP) som finansieras av Vinnova, FORMAS och Energimyndigheten. Lindholmen Science Park är värdorganisation med Sofie Vennersten som programledare och Jan Hellåker som ordförande och har mer än 120 partners från 13 länder – 4 nya medlemmar presenterades på konferensen. Programmet blir alltmer internationellt, med samverkan såväl i EU- finansiering som gemensamma projekt. Man har också nu en person i Silicon Valley och har samarbete med Singapore.

Drive Sweden finansierar lite mer banbrytande projekt inom hållbar mobilitet, som exempelvis KOMPIS, LIMA och KRABAT. Man ger också ut nyhetsbrevet Smart Mobility samt har ett antal andra aktiviteter. Man gör nu ett omtag och lanserar en ny struktur, med delarna Society Planning, Digital Infrastructure, Policy Development, Business Models och Public Engagement, med fokus på såväl person- som godstransporter. Man har nu en öppen utlysning Innovationer för ett digitaliserat och automatiserat transportsystem för människor och gods som stänger 5 november.

Här korta sammanfattningar från några av konferensens föredrag.

David Green från Lynk & Co pratade om företagets vision att förändra mobilitet med hjälp av digitalisering för att ge en bättre kundupplevelse. För detta krävs samverkan med externa parter och man har skapat en öppen samverkansplattform colab.lynkco.com.

Ulrik Janusson och Marie Bemler från Scania visade några framtida möjliga scenarios för digitalisering inom godstransporter. Två viktiga parametrar är öppenhet i delning av data och hur mycket klimatfrågan slår igenom.

Hur kan man samverka med allmänheten när man designar framtida mobilitetstjänster och därmed nå en bättre acceptans för till exempel självkörande fordon? Detta har Vaike Fors från Högskolan i Halmstad studerat. En lärdom är att man måste gå bortom att bara titta se ”användare” och ”stadsinvånare” till att se alla som människor med olika behov, kunskaper och värderingar.

Våra kollegor Kent Eric Lång och Håkan Burden från RISE Viktoria berättade om policy-labbprojektet PLATT som tittar på möjliga strategier för att underlätta för självkörande fordon även från nya aktörer. En viktig strategi är att kunna bygga förtroende, trust, istället för tidigare typgodkännande-rutiner. Projektet är snart slut och man söker nu nya initiativ runt policy-utveckling.

Samtidigt måste samhället kunna hantera både att skapa goda näringslivsförutsättningar för ny teknologi och också bibehålla och förbättra säkerheten i trafikmiljön och därmed bygga förtroende, vilket Anna Fridén från KOMET, Kommittén för teknologiskt innovation och etik som den svenska regeringen tillsatt, berättade om.

Stefan Myhrberg från Ericsson talade om digital infrastruktur för automatiserade fordon, där man bland annat etablerat Drive Sweden Innovation Cloud, där Drive Sweden-medlemmar kan lagra och dela data från fordon, infrastruktur, parkeringsplatser, kameror etc. 5G är då en möjliggörare för att tillräckligt snabbt hantera de stora datamängderna som krävs när många enheter blir uppkopplade.

Olof Johansson från Trafikverket visade en ny färdplan för ett uppkopplat och automatiserat vägsystem. Färdplanen har identifierat 20 åtgärder i 4 kluster: Ökad kunskap om automatiseringens effekter (t.ex. tester och demonstrationer), Effektivt utnyttjande av kapacitet (t.ex. MaaS), Hållbart och säkert transportsystem genom digitalisering (t.ex. miljözoner) och Nya planeringsstöd för ökad användbarhet (t.ex. simuleringsmodeller). Nästa steg är att implementera åtgärderna. Suzanne Andersson från Trafikkontoret i Göteborg pratade om några utmaningar som då uppstår för samhällsplanerarna, som att städer utvecklas långsamt och man måste ta hänsyn till kommungränser.

En svårighet är att hitta och välja rätt affärsmodell för nya mobilitetslösningar. Rami Darwish från KTH berättade om ett affärsmodell-labb som man jobbar med inom ITRL ihop med Sustainable Innovation. I en paneldiskussion med Li Höglund från SnappCar, Stina Wärn från Folksam, Ulf Hammarberg från DHL och Mikael Rönnholm från CEVT, ledd av Roland Elander från Sustainable innovation, diskuterades detta. En nyckel är att lyssna till användarna och att vara beredd att göra snabba ändringar. Data från fordon och tjänster är också viktiga informationskällor. Men informationen måste då skyddas från intrång. Även regelverken måste kunna anpassas snabbt, med elsparkcyklar som ett aktuellt exempel. E-handel är ett annat område där affärsmodellerna behöver anpassas att bli både mer hållbara men ändå lönsamma. För industrin behöver affärsmodeller och leverantörskedjor också bli mer öppna att inkludera även lösningar från små entreprenörsföretag. Utvecklingen går både fortare och långsammare, beroende på område, än vad många tror. Man måste alltså jobba både kort- och långsiktigt.

Martin Svensson från AI Innovation of Sweden pratade om AI i det framtida transportsystemet, på komponent-, system- och samhällsnivå. Det finns stora möjligheter men mycket återstår att göra. Mats Nordlund från Zenuityvisade exempel på hur de använder AI och maskininlärning i sin verksamhet.

Joakim Jonsson från Volvo Bussar berättade om arbetet med autonoma stadsbussar som är kopplat till KRABAT-projektet. Man kan inte börja med att köra helt autonomt utan har identifierat 3 möjliga användningsfall: hållplatskörning, busståg och rangering i bussdepå. Se filmen nedan.

AI.se

Under veckan invigdes det nya centret AI Innovation of Sweden i Göteborg [1]. Det är en nationell satsning som har ambition att fungera som en motor i det svenska AI-ekosystemet. Fokus kommer att ligga på att accelerera tillämpningen av AI genom delning av kunskap och data, samlokalisering och samarbetsprojekt, allt med ett starkt fokus på etik, transparens och säkerhet. Satsningen finansieras av Vinnova (30 Mkr fördelade på 4 år) samt ett 40-tal medlemmar som väntas bidra med egen tid. 

AI Innovation of Sweden har lovordats av många, och inte minst vår nyblivne Energi- och digitaliseringsminister Anders Ygeman som under invigningen konstaterade: Sverige ska vara bäst i världen på att använda digitaliseringens möjligheter. AI Innovation of Sweden är en viktig del i att göra verklighet av det. [2]

Lindholmen Science Park AB står som värd för det nya centret. 

Källor

[1] AI Innovation of Sweden, News. AI Innovation of Sweden officially launched. 2019-02-06 Länk

[2] Digitalifrsatruktur. Nu startar AI Innovation of Sweden. 2019-02-06 Länk

Policyutveckling för självkörande fordon

Hur skall regelverk och policies utvecklas och anpassas vid införandet av disruptiva tekniker? Harvard har sett att t.ex. Uber, AirBnb och Bird valde att starta tjänsterna utan att begära myndigheternas tillstånd eller medverkan. Istället kom reaktionerna från städer eller andra berörda när negativa effekter uppstod. Detta vill beslutsfattare och Harvard undvika för självkörande fordon genom proaktivt arbete.

Harvard har genomfört ”policyscrum” med Boston och tre städer samt kurser med studenter [1]. Bland resultaten från detta policyscrum är att städer skall förklara varför och till vad myndigheten vill ha tillgång till data från självkörande fordon. Studenterna tog bl.a. fram förslag på regler för avlämning och upphämtningsplatser vid samåkning.  

I Sverige har Transportstyrelsen startat ett policylab med Vinnova för att förenkla tillståndsprocessen för självkörande fordon [2].

Egen kommentar:

På RISE kallar vi detta område Regelverksinnovation som komplement till teknisk- och affärsmodellinnovation. Ett mycket intressant område där samverkan mellan myndigheter och entreprenörer ger bästa nytta.

Källor:

[1] Juan Siliezar: Paving the way for self-driving cars, The Harvard Gazette 2019-01-03 Länk

[2] Transportstyrelsen banar väg för självkörande fordon, VINNOVA 2019-01-17 Länk