Kategoriarkiv: Okategoriserade

Ford och Argo AI levererar varor

Ford och Argo AI, som delvis ägs av Ford, har inlett en pilot i Miami med mål att testa en leveranstjänst med självkörande fordon [1]. 

Piloten görs i samarbete med ideella organisationen The Education Fund som tillhandahåller program för lärare och studenter i offentliga skolor i Miami-Dade County. Inom ramen för piloten kommer Ford och Argo AI att leverera mat och skolmaterial från The Education Funds Food Forests for Schools-program till ungefär 50 studentfamiljer. 

Piloten kommer att pågå i åtta veckor. I varje bil finns en tekniker och en säkerhetsförare.


[1] Venture Beat. Ford and Argo AI kick off charitable food delivery pilot in Miami. 2020-12-07 Länk

Guldkorn från svensk forskning 2020

Trust in What? Exploring the Interdependency between an Automated Vehicle’s Driving Style and Traffic SituationsAs the progression from partial to fully autonomous vehicles (AVs) accelerates, the driver’s role will eventually change from that of active operator to that of passenger. It is argued that this change will lead to improved traffic safety, as well as increased comfort. However, to be able to reap the benefits, drivers must first trust the AV. Research into automation has shown that trust is an important prerequisite to using automation systems, since it plays an important role in creating user acceptance and in generating a positive user experience. Moreover, for the purposes of safe AV operation, it is important that the user’s trust in the automation is appropriate to the actual capabilities of the system. One important aspect that can build user trust is to conveyvehicle capability, something which is commonly communicated via displays located in the cockpit of the vehicle. However, it has also been shown that parameters such as lateral steering also provide the driver with an understanding of the vehicle’s capability. Therefore, driving styles, or how the act of driving an AV should be conducted, may affect a user’s trust. However, little research has been conducted on the impact of driving styles in AVs in everyday traffic situations; that is, situations often encountered in a day-to-day driving context, such as stopping for a pedestrian at a zebra crossing or overtaking a moving vehicle. An experimental study with 18 participants was conducted on a realistic test course using a Wizard of Oz approach. The experiment included seven everyday traffic situations that the participants’ experienced with two different driving styles, Defensive and Aggressive driving style. The results show that characteristics of everyday traffic situations have an effect on the users trust in automated vehicles (AVs). Primarily due to perceived risks (for oneself and others), task difficulties and how the AV conforms to the user’s expectation regarding how the AV should operate in everyday traffic situations. Furthermore, the results also show that there are are interdependencies between situational aspects and how the AV driving behaviour conducts actions. Thus, the AV driving behaviour needs to be designed to operate differently depending on the traffic situation, to enable the user to create an appropriate level of trust, in relation to the actual performance of the AV. Finally, trust results from the information provided by the AV’s behaviour, what it explicitly communicates via displays, and how these factors relate to the driving context. Thus, a systems approach is necessary, in which the interaction between user and automation is key, but without neglecting the equally important contextual aspects. This study was funded by Vinnova, Sweden’s Innovations Agency, under grant number 2014-01411. The study was able to use the facilities and expertise of the full-scale test environment AstaZero through the open research grant, application number A-0025. Here you can find full paper, and for more information contact Fredrick Ekman at Chalmers (fredrick.ekman@chalmers.se) or read his licentiate thesis titled Designing for Appropriate Trust in Automated Vehicles that was publicly presented earlier this year. 

The Day 1 C-ITS Application Green Light Optimal Speed Advisory. Leveraging the growing communication capabilities between vehicles, infrastructure and other road users, applications under the C-ITS umbrella are expected to improve road safety, traffic efficiency and comfort of driving by helping the driver take decisions and adapt to the traffic situation. The Day 1 set of C-ITS applications, as defined by the C-ROADS platform build on mature technologies and are expected to be deployable and provide benefits in the short term, but what scientific evidence is there on their effectiveness and what gaps in knowledge are there? For the C-ITS Day 1 application Green Light Optimal Speed Advisory (GLOSA), these questions were addressed by a systematic mapping study (to our knowledge, the first such study to be published), conducted as part of the Nordic Way 2 project (co-financed by Connecting Europe Facility, CEF project 2016-EU-TM-0051-S), presented at the European Transport Conference 2019 and published in Transportation Research Procedia in 2020. Among the findings where that while there are many published studies evaluating GLOSA, the absolute majority collect data in simulation, focused mainly on observable effects for the equipped vehicle where fuel consumption and travel time were the most prevalent effects examined. Further, there was great variation in the effects observed (for instance, fuel consumption varied from no evident reduction to approximately 70% reduction between studies) providing little consensus in concluding the effectiveness of the GLOSA application. A possible reason for the big effectiveness variation is a lack of well calibrated models used in the simulations scenarios, especially with regard to driver and fellow road user behaviour and precision of traffic light phase shift prognoses. For more information contact Niklas Mellegård at RISE (niklas.mellegard@ri.se).

Making autonomous drive skilled in extreme situations. During 2020 Sentient finalised the development and testing of the S+ Split-μ Control function, that makes autonomous drive safe in the critical situation of braking in an emergency on split friction roads. Compared to traditional ABS, the braking distance could be reduced by up to 37% while maintaining stability. The function is available also for use in manually driven cars to aid the driver perform like expert drivers would in a split-μ situation. Watch this demonstration from the Colmis test track outside of Arjeplog. More information about safety functions developed by Sentient is available at the company’s website.

Ljuddesign som ökar tillit och minskar åksjuka i självkörande bilar. Hur kan ljuddesign höja användarupplevelsen i automatiserade fordon? Denna fråga har Volvo Cars utforskat de senaste två åren tillsammans med RISE och Pole Position Production. Projektet Ljudinteraktion i Intelligenta Bilar har tagit fram helt nya typer av gränssnitt där passageraren får information om bilens kommande beteende, samt vad i trafikmiljön som bilen fokuserar på. Signalerna låter bland annat snarlikt bilens naturliga ljud vid acceleration och fartminskning, men spelas någon sekund innan bilen agerar. Projektets studier har visat att signalerna ökar passagerarnas tillit till bilen, samt minskar åksjuka för en majoritet av passagerarna. I projektets avslutade del implementeras en prototyp av ljudgränssnittet i en Volvobil, vilket gör det möjligt att uppleva ljuden i verklig trafikmiljö. Resultat från projektet kommer presenteras vid ett seminarium hos SAFER i slutet av januari. Hör av er till projektledaren Fredrik Hagman på Volvo Cars för mer info (fredrik.hagman@volvocars.com), eller besök projektets hemsida. Projektet finansieras av Fordonsstrategisk Forskning och Innovation (FFI).

DI-PPP public and private partnership platform for quick and effective implementation of digital transport infrastructure: This pre-study is jointly financed by Drive Sweden and Trafikverket to accelerate the implementation of digital infrastructure in Sweden. The project uses the Trafikverket roadmap on connected and automated road transport system extensively to explore the synergies and to support the service development. The project defines the digital transport infrastructure from a system of systems perspective with the identification of key areas, action points, and expected achievements for the year 2021 – 2025. The project calls for both top-down and bottom-up approaches to build infrastructure that on the one hand enables applications and services fulfilling the mobility needs, and on the other hand, is built on an existing infrastructure with incremental advancement. The project calls for the establishment of a public and private stakeholder partnership platform that is long-term, proactive and progressive, with strong engagement and balanced investments among stakeholders to accelerate the infrastructure implementation. The results have been presented at the Drive Sweden thematic area digital infrastructure, and for more details and reports, please contact Lei Chen at RISE (lei.chen@ri.se).

Project CeViSS. Cloud enhanced Vehicle – intelligent Sensor Sharing (CeViSS) is a joint Drive Sweden project that has run from January to December 2020. The project was financed in part by Vinnova / Drive Sweden with partnership including Carmenta, CEVT, Ericsson, Volvo Cars and Veoneer. The primary goal of the project was to extend the previously established AD Aware Traffic Control cloud with functions to study and demonstrate how the central cloud platform can be used to collect and enhance critical traffic information before safely sharing it between automotive actors. The project successfully demonstrated how data registered by a Veoneer vehicle’s sensors, was collected, analyzed and enhanced in real-time on the central cloud level and then shared with the two project OEM partners; CEVT and Volvo Cars. Their connected cars could then take appropriate action and more precisely mitigate the hazard on their road ahead. The project also showed how the Carmenta Central Traffic Cloud could send instructions to the Veoneer and CEVT cars such as a recommended speed inside geofences (to be used by the Adaptive Cruise Control (ACC)) and search requests to look for specific symbols or texts (e.g., license plate numbers). Tests were also done where the Central Traffic Cloud had direct control of on-board cameras to start sending video when the Veoneer’s test vehicle approached an accident scene. Images or live video from the scene have the potential to give 112 operators and first responders a better understanding of the situation and help dispatch the right resources as well as make a more detailed planning of the rescue operation before arrival. A series of workshops was arranged during the project with representatives from two rescue organisations to get their response on the value of the technology. Both KatastrofMedicinskt Centrum (KMC) and SOS Alarm confirmed that when planning a rescue operation as well as when organizing the work at the scene it is important to collect as much information as possible about the accident area. Images or live video transmitted from a recent accident under strict control have the potential to improve rescue operations. As the sharing of sensor data in such a way have possible privacy concerns, the legal aspects was also investigated. The results of the legal study is documented in a separate report, added as an appendix to this document. The main deliverables from the project were live proof-of-concept trials performed at several occasions with final tests successfully completed at AstaZero test track, October 19, 2020. A film documenting these tests and explaining the project results was produced and a presentation held at a webcasted Drive Sweden event on December 1, 2020 concluded the project. The project has based its work on the cloud-based platform that was created in the project ”AD Aware Traffic Control” and further extended in the project ”AD Aware Traffic Control Emergency vehicles” and the following ”AD Aware Traffic Control – Advanced Cooperative Driver Assistance” project. The project used technology in Drive Sweden Innovation Cloud and its results will be integrated in this innovation platform for future use. For more information contact Kristian Jaldemark at Carmenta (Kristian.Jaldemark@carmenta.com).

Digital Twins Are Not Monozygotic – Replicating ADAS Testing Across Simulators. Testing in simulators is an essential component in cost-efficient and effective ADAS development. Without countless hours on virtual test tracks, arguing that an ADAS is safe for use on public roads will be practically impossible. However, how can we interpret issues that are detected in a simulator? Would they generalize to the real-world environment? Would they even generalize to another simulator? In a joint study with the University of Luxembourg, RISE used search-based software testing to identify safety violations of a pedestrian detection system in TASS/Siemens PreScan and ESI Pro-SiVIC. However, when replicating the same scenario in the other simulator, the researchers found that the results often differed substantially. Consequently, the researchers recommend future V&V plans to include multiple simulators to support robust simulation-based testing. Make sure the ADAS works safely in other simulators before hitting the real-world roads! The paper pre-print is available here, for more information contact Markus Borg at RISE (markus.borg@ri.se).

Nordic initiative for transport of passengers and goods by drone (NDI): The Nordic countries are joining forces to drive the development of drone transports for both goods and passengers. The Nordic Drone Initiative (NDI) will pave the way for new sustainable business models. It can be about air-taxis, autonomous courier services or new tourist concepts. NDI is co-financed by Nordic Innovation through their Nordic Smart Mobility and Connectivity program, led by RISE and consists of 16 partners from four Nordic countries including RISE, Katla Aero, Flypulse, Kista Science City, Mainbase, LFV and Region Östergötland from Sweden; VTT, Bell Rock Advisors, Robots Expert, Business Tampere from Finland; NORCE, Nordic Edge, UAS Norway and Drone Nord from Norway; and Gate21 from Denmark. The project reference group includes Norwegian Avinor ANS and Finnish ANS. The project is welcoming partners and will collaborate with NEA – the Nordic Network for Electric Aviation to jointly plan for short- and long-haul transports with electric aircraft. For collaborations, please contact Tor Skoglund at RISE (tor.skoglund@ri.se).

Testing safety of intelligent connected vehicles in open and mixed road environment (ICV-Safe): This project is a bilateral joint effort to identify safety-critical scenarios and to develop risk assessment and mitigation methods for intelligent connected vehicles (ICVs) by taking advantage of the large-scale open connected test environment in Shanghai. The project will conduct iterative case design, data collection, simulation, and open road test. The results will lay a foundation for the safe introduction of ICVs to minimize safety risks. RISE is coordinating the Swedish part with partners including Chalmers University of Technology, Alkit Communications AB, WSP AB, and FellowBot AB. The Chinese part is coordinated by Tongji University with partners including Research Institute of Highway (RIOH) Ministry of Transport, Chang’an University, Guangzhou O.CN International Technology Co., Ltd, Shanghai SongHong Intelligent Automotive Technology Co., Ltd., and Beijing Tusen Weilai Technology Co., Ltd (TuSimple). Through the project, the partners are also working actively with Swedish actors in China outside the project consortium to explore synergies for further research collaborations and innovation. For more details, please contact Lei Chen at RISE (lei.chen@ri.se).

CTS – Heterogeneous project. This project aims to investigate effects of autonomous vehicle in a mixed traffic environment, i.e., the traffic where automated vehicles share roads with different types of manually-driven vehicles. Effects on traffic flow and safety are the main interests of the project. An example of upcoming activities in the project is a driving simulation study, which is planned during January-February 2021. The study aims to investigate whether there is a behavior adaptation among human drivers when they share roads with automated vehicles. This project is funded by VINNOVA, and it is within the scope of CTS (The China Sweden Research Centre for Traffic Safety), which is an on-going collaboration within SAFER’s research program. Partners on the Swedish consortium includes VTI, Chalmers, Volvo Cars, and Volvo Group; and partners on the Chinese consortium are RIOH, Beijing Jingwei HiRain, Tsinghua University, and Tongji University. Link: Heterogeneous Traffic Groups Cooperative Driving Behaviours Research under Mixed Traffic Condition | SAFER – Vehicle and Traffic Safety Centre at Chalmers (saferresearch.com).

Drivers’ ability to engage in a non-driving related task while in automated driving mode in real traffic. Engaging in non-driving related tasks (NDRTs) while driving can be considered distracting and safety detrimental. However, with the introduction of highly automated driving systems that relieve drivers from driving, more NDRTs will be feasible. In fact, many car manufacturers emphasize that one of the main advantages with automated cars is that it “frees up time” for other activities while on the move. This paper investigates how well drivers are able to engage in an NDRT while in automated driving mode (i.e., SAE Level 4) in real traffic, via a Wizard of Oz platform. The NDRT was designed to be visually and cognitively demanding and require manual interaction. The results show that the drivers’ attention to a great extent shifted from the road ahead towards the NDRT. Participants could perform the NDRT equally well as when in an office (e.g. correct answers, time to completion), showing that the performance did not deteriorate when in the automated vehicle. Yet, many participants indicated that they noted and reacted to environmental changes and sudden changes in vehicle motion. Participants were also surprised by their own ability to, with ease, disconnect from driving. The presented study extends previous research by identifying that drivers to a high extent are able to engage in an NDRT while in automated mode in real traffic. This is promising for future of automated cars ability to “free up time” and enable drivers to engage in non-driving related activities. The study was conducted by Volvo Cars and RISE in collaboration between two FFI funded projects: TIC – Trust to Intelligent Cars and HARMONISE – Safe interaction with different levels of automation. A pre-print of the paper is available here, and for more information contact Jonas Andersson at RISE (jonas.andersson@ri.se). 

Remote Driving Operation (REDO) project. Remote driving operation or teleoperated driving can support deployment, operation, and testing of automated vehicles. With advancement in wireless communication technology, this has recently becomes more feasible. In the REDO project, we are looking at different technical and non-technical aspects related to teleoperated driving, which include 1) interaction with remote operator; 2) feedback mode from vehicle to remote operator; 3) system architecture; and 4) laws and regulations. Demonstration is also planned towards the end of the project. This is a 3-year project funded by VINNOVA. The partners in the project are: VTI, CEVT, Einride, Ericsson, Ictech, KTH, NEVS, and Voysys. Link: REmote Driving Operation – REDO | Vinnova. For more information contact Maytheewat Aramrattana at VTI (maytheewat.aramrattana@vti.se).

Human factors in remote operation of heavy vehicles. Currently, most highly automated vehicles still require the presence of a human safety operator in the vehicle, and it is evident that automated driving without human “fallback” might be distant. On the other hand, having a human operator in the vehicle jeopardizes major anticipated benefits of automated driving – productivity. This is especially evident when it comes to heavy automated vehicles. To bridge this gap, stakeholders are exploring teleoperations technology, which enables highly automated vehicles to be remotely operated if necessary. But remote operation comes with its own challenges, both from technical and human behavior perspectives. In this SAFER co-financed prestudy, Scania and RISE have identified potential safety challenges and research gaps related to human behavior in the context of remote operation of heavy automated vehicles. A general view of the human factors related challenges within the remote operation topic can be summarized by highlighting phenomena such as physical and psychological distancing, screen delays, network latency delays, inefficient interface designs, and human operator’s cognitive limitations. These are not exclusive to one single operational level, or application type, and are often interrelated. A larger body of scientific work can be found related to human factors in remote operation in other domains (e.g., robotics, aerial drones, military). Some of the findings from these domains can have value for the automotive domain, however, generally design requirements are not directly transferable between domains as there are domain specific challenges. An overall conclusion from the prestudy is that human factors in remote operation of highly automated road vehicles have been somewhat neglected by industry and research community. By providing an overall conceptualization of remote operation and its complexity, a theoretical framework, a state of the art overview, and a list of gaps and challenges, the expectation is that this pre-study will stimulate more activities in the area. The recently started FFI-project HAVOC is example of such an activity. The pre study was co-financed by SAFER and conducted by Scania and RISE. Link to final report, for more information contact Azra Habibovic at RISE (azra.habibovic@ri.se).

Task Force – Hygiene procedures in test with research persons. Since the rapid outbreak and continued global spread of the Coronavirus Disease (COVID-19) in 2020, aspects of much of our day-to-day life in society has been impacted – our workplaces are no exception. Due to the novelty of COVID-19 to health officials in Sweden and around the world, standardized guidelines on how to safely proceed with business activities that require the sharing of physical spaces and/or equipment between individuals has yet to be established. In anticipation of this pandemic being an ongoing issue, a task force was assembled to help address this gap. The SAFER task force was comprised of transport industry professionals in Sweden that have a role in conducting research and testing that would currently be deemed to place individuals at risk of contracting the virus if one of the involved actors were to be an active carrier of the virus. Therefore, the goal of this task force was to help establish a set of general guidelines to consider when attempting to mitigate the risk of contagion while performing research or testing activities at our respective corporate facilities. Questions related to “How can experiments involving test persons in vehicles, driving simulators, virtual-reality studios, or similar test facilities continue?”, “What safety procedures should we consider to introduce in order to ensure proper hygiene for the individuals involved?”, “Is it required for drivers to wear a face mask?”, and “How do we implement physical distancing provisions pre- and post-experiment interviews?” were addressed. Partners in the Task Force were VTI (coordinator), Volvo Group Trucks Technology, Autoliv, Veoneer, RISE and Scania. The project was co-financed by SAFER. For more information contact Arne Nåbo at VTI (arne.nabo@vti.se). 

Påminnelse om guldkorn

Som vi skrev för någon vecka sedan är vår ambition att inför vårt julavslut publicera en sammanfattning av svensk forskning kring automatiserade transporter, och till det behöver vi input från er. 

Vi skrev då att deadline var den 10 december, men på förslag från några läsare förlänger vi deadline till den 13 december!

Överraska oss med spännande läsning om guldkorn från er forskning! Det kan vara en kort sammanfattning om avslutade eller planerade projekt och studier, en rapport, artikel eller patent – ja, allt möjligt på ca 3-10 meningar. 

Skicka din sammanfattning till azra.habibovic@ri.se. Mer info om det hela hittar ni här.

Hjälp oss att sammanställa svensk forskning

Tiden går och snart är det dags för oss att sammanställa guldkorn från svensk forskning 2020, vilket vi brukar göra inför vår sommar- och juluppehåll.  

Har du några nyligen avslutade, pågående eller planerade studier och projekt som rör automatiserade transporter och som du vill dela med dig av till våra andra läsare? Skriv i så fall en kort sammanfattning (3-10 meningar) på engelska eller svenska och skicka den till azra.habibovic@ri.se senast den 13 december.

Vi är intresserade av alla relevanta ämnen, från processorer till sensorer, algoritmer, HMI, mobilitetstjänster, utvärderingsmetoder och verktyg, designmetoder, koncept, samhällseffekter, trafikreglering och lagstiftning. Ja, allt mellan himmel och jord!

Det kan vara en sammanfattning av en specifik studie eller dina samlade insikter utifrån din forskning och utveckling inom ett visst område. Om möjligt, inkludera länkar till relevanta källor (artiklar, webbsidor, filmer). Glöm inte att nämna forskningensfinansiärer! 

Här är några exempel på hur en sådan sammanfattning kan se ut.

Mer ADAS-erfarenhet leder till mer distraktion?

En ny studie om körbeteende som utförts i samarbete mellan Insurance Institute for Highway Safety (IIHS) och MIT AgeLab visar att ju mer förare är bekanta med förarstödssytem (ADAS) desto mer ouppmärksamma blir de på själva körningen [1]. 

Studien involverade 20 förare från delstaten Massachusetts som observerades i en månad. De var indelade i två grupper. Den ena gruppen bestod av 10 förare som körde totalt 192 timmar. De körde en Land Rover Range Rover Evoque-bil utrustad med adaptiv farthållare (ACC), som automatiskt håller fordonet i en viss hastighet som valts av föraren samtidigt som det bibehåller ett förvalt avstånd till framförvarande fordon. Den andra gruppen bestod också av 10 förare. De körde totalt 134 timmar i en Volvo S90-bil utrustad med både ACC och Pilot Assist. Det sistnämna systemet kombinerar ACC med filcentreringsteknik. Både S90 och Evoque var utrustade med ett datainsamlingssystem som bestod av kameror och GPS.

Studien utforskade förarnas körbeteende och hur ofta de tog bort händerna från ratten samt hur ofta de var ouppmärksamma på körningen och vilka icke-körrelaterade aktiviteter som de engagerade sig i. 

Resultaten från studien visar bland annat:

  • När förarna först tog emot fordonen var det liten eller ingen skillnad i hur ofta de visade tecken på att de var ”frånkopplade” från körningen, oavsett om de körde manuellt, använde ACC eller Pilot Assist. 
  • Efter en månad var förarna avsevärt mer benägna att bli ouppmärksamma eller ta bort händerna från ratten. Detta var mer påtagligt när de använde Pilot Assist än när de använde bara ACC. Förare som använde ACC var inte mer benägna att ta bort händerna från ratten än när de körde utan förarstödsystemet. 
  • Förarna var mer än dubbelt så benägna att visa tecken på ”frånkoppling” från körningen efter en månads användning av Pilot Assist jämfört med studiens början. 
  • Jämfört med manuell körning var förarna mer än 12 gånger så benägna att ta bort båda händerna från ratten efter att de blivit vana vid Pilot Assist.
  • Efter att förarna blivit bekanta med Pilot Assist valde endast 4 av 10 förare att använda ACC.
  • Mobiltelfonanvänding och justering av elektroniken i fordon var de mest frekventa icke-körrelaterade aktiviteterna som förarna engagerade sig i.  
  • Evoque-förare som använde ACC ofta, var mer benägna att titta på eller plocka upp sin mobiltelefon när de använde förarstödsystemet än vid manuell körning. Den tendensen ökade kraftigt när de blev vana vid ACC. Å andra sidan resulterade ökad vana inte i mer frekvent användning av telefonen för aktiviteter som att skriva sms-meddelanden tillexempel.  

Egen kommentar

Det är en generellt brist på (publika) användarstudier som sträcker sig över tid och den ovan beskrivna studien är mer än välkommen. Jag tycker dock att det är lite synd att studien inte kartlagt förarnas subjektiva upplevelser och erfarenheter i mer detalj. Det hade gett en djupare förståelse för mätningarna.


[1] Reagan, J. et al 2020. Disengagement from driving when using automation during a 4-week field trial. Länk

[2] IIHS. Drivers let their focus slip as they get used to partial automation. 2020-11-19 Länk

Tips inför helgen

Vi håller oss på hemmaplan!

Är ni nyfikna på Volvo Cars nya körsimulator som blandar virtuell och verklig värld? Då kan ni läsa och höra om den här.

Vill ni få en överblick av Ericssons 50 år av innovation? Då ska ni lyssna på det här podcastavsnittet med Anders Fagerholt som arbetat på företaget sedan 1973. Det är inte illa det! Anders har under årens gång varit involverad i flertal projekt om uppkopplade och självkörande fordon, både i Sverige och Europa. Redaktionen önskar Anders lycka till med hans nya äventyr!

Designrekommendationer för ADAS

För drygt en månad sedan publicerade Consumer Reports en rankning av 17 existerande förarstödssystem (ADAS). Nu har organisationen publicerat en rapport med lite mer information om rankningen, samt riktlinjer och rekommendationer för design av ADAS [1]. Dessa är skrivna på en ganska hög nivå och är främst riktade mot fordonstillverkarna. 

Några av rekommendationerna:

  • Direkt övervakning av förare är viktigt. Varningar som ”händer på ratten” räcker inte. Kamerabaserade system är mer effektiva.
  • Det bör alltid vara upp till föraren att välja vilket system som används, och systemen får inte ha stand-by lägen som gör att de aktiveras då och då. 
  • Filhållningssystem bör hålla fordonet mitt i körfältet. Förare förväntar sig att systemen håller fordonet i mitten av körfältet – och om det inte gör det, kommer de sannolikt att sluta använda systemet. Flera filhållningsystem orsakar förvirring.
  • Systemen bör känna igen förarens tillstånd och hålla föraren säker när de behöver det som mest. Systemet ska fortsätta fungera och inte straffa föraren för att föraren inte engagerar sig i körningen. Om föraren inte svarar på varningar bör systemet försöka göra allt för att stoppa fordonet på ett säkert sätt och anropa hjälp.


[1] Consumer Reports. Active Driving Assistance Systems: Test Results and Design Recommendations. November 2020. Länk

Ny testbädd på Irland

Future Mobility Campus Ireland (FMCI) är namnet på en ny testbädd som drivs av bl.a. Jaguar Land Rover, Cisco, Seagate, Renovo, Red Hat, Valeo och Mergon [1]. Ett flertal myndigheter och forskningsorganisationer är också involverade.

Som det framgår av namnet ligger testbädden på Irland, utanför staden Shannon. Planen är att den ska omfatta över 12 km allmänna vägar samt inkludera smarta korsningar, uppkopplade vägar, parkeringar och laddstationer. Vidare så kommer den nya testbädden att länka till en 450 km lång uppkopplad motorväg. 

FMCI kommer att användas för testning av eldrivna, uppkopplade och automatiserade fordon i verklig trafik. 

Som ett första steg kommer Jaguar Land Rover att testa sin eldrivna Jaguar I-PACE där.



Honda först med level 3?

Honda har nu erhållit tillstånd från Japanska Ministry of Land, Infrastructure, Transport and Tourism (MLIT) för att få sälja fordon med automationsnivå 3 enligt SAE skalan [1, 2].

Planen för Honda är att påbörja försäljning av sina Honda Legend fordon utrustade med Traffic Jam Pilot under våren 2021. Lyckas de med det kan de bli, enligt företaget själva, den första fordonstillverkaren som kommersialiserar fordon med automationsnivå 3.

I april gjorde MLIT en uppdatering i sin Road Vehicle Act där kraven för automatiserad körning motsvarande SAE-nivå 3 skrevs in. Ett av kraven är att fordonet måste vara utrustat med ett förarövervakningssystem som kan identifiera förarens tillstånd. Utöver det behöver fordonets baksida utrustats med en specialdesignad ”Automated driving”-dekal.


[1] Honda. Honda Receives Type Designation for Level 3 Automated Driving in Japan. 2020-11-11 Länk

[2] Stumpf, R., The Drive. Honda Launching World’s First Production Car With ’Eyes-Off’ Self-Driving Tech by Mid-2021. 2020-11-11 Länk

Automatiserad vägreparation i Storbritannien

Universitetet i Liverpool i Storbritannien har gjort en avknoppning tillsammans med teknikföretaget A2e Limited [1]. Avknoppningen heter Robotiz3d Limited och dess uppgift blir att kommersialisera en lösning för automatiserad vägreparation.

Mer specifikt så ska det nya företaget utforska användandet av artificiell intelligens (AI) och robotik för detektering och reparation av vägskador som hål och gropar. Systemet som utvecklas för vägreparationer kommer kallas för ARRES.

Egen kommentar

I somras skrev vi om en liknande arbetsmaskin från kinesiska XCMG för asfaltering, och förra året testades en självkörande lastbil vid vägarbeten i England. Ett annat koncept har tidigare testats vid vägarbeten i Florida och Colorado. Detta är nu ett produktionsfordon.


[1] Frangoul, A., CNBC. In the UK, researchers push on with efforts to develop autonomous vehicles that repair potholes. 2020-10-30 Länk