Etikettarkiv: KTH

Svensk forskning: Framtiden är ljus

MICA. CoEXist. SMART. PLATT. PRoPART. PERCEPTRON. PRELAT. DENSE. Barmark. BRAVE, HATric. Ja, så heter några av projekten som ni har äran att läsa om i årets sista sammanställning av relevant svensk forskning. För varje gång blir jag mer och mer imponerad av vår forskning och forskare. Det är fantastiskt att se hur mycket görs i vårt ”lilla” land, och det här är nog bara en bråkdel av det hela! Vi behöver bara bli bättre på att sprida våra resultat, och jag hoppas att OmAD bidrar till detta. Något annat vi behöver bli bättre på är att koppla samman våra projekt till en helhet och visa hur de leder till positiva samhällsförändringar. Kanske ett lämpligt nyårslöfte?

Stort tack till er alla som bidragit till den här sammanställningen! Det hade inte varit möjligt utan era bidrag och engagemang.

Modeling driver behavior in interactions with other road usersDriver models help improve and evaluate systems for road crash mitigation and avoidance. As systems develop and address increasingly complex scenarios. Driver models also need to be developed to be able to account for the interactions among these road users. Even as we improve driver modeling with control-theory models and actual data-driven implementations, existing driver models fail to sufficiently take interaction among road users into consideration. This paper addresses this insufficiency by proposing a new operational framework to computationally model interactions among road users. For this purpose, we introduce a definition for interaction among road users. The modeling framework is demonstrated by a specific driving scenario: the overtaking of a cyclist when an oncoming vehicle may be present. In this scenario, modeling driver interaction using Unified modeling language within our framework can lead to improved crash mitigation and avoidance through tailored system activation of automated emergency braking. This is a paper that will be presented at TRA-conference next year. The work was partly carried out at SAFER and within the FFI-project Modelling Interaction between Cyclists and Automobiles (MICA). For more information contact Prateek Thalya at Veoneer (prateek.thalya@veoneer.com).

Researchers from Veoneer have also published several other relevant papers, contact Ola Boström (ola.bostrom@veoneer.com) at Veoneer for more information: 

  • Occupant activities and sitting positions in automated vehicles in China and Sweden – The 26th International Technical Conference on the Enhanced Safety of Vehicles (ESV)
  • Passenger Car Safety Beyond ADAS: Defining Remaining Accident Configurations As Future Priorities Conference: The 26th International Technical Conference on the Enhanced Safety of Vehicles (ESV)
  • Intersection AEB Implementation Strategies for Left-Turn Across Path Crashes – Traffic Injury Prevention (ADAS)
  • A Model of Indian Drivers’ Ratings of In-Vehicle Alerts to Pedestrian Encounters on Roads in India, for presentation at the coming Human Factors and Ergonomics Society’s 2019 International Annual Meeting
  • Benefits of intuitive auditory cues for blind spot in supporting personalization; ESV2019
  • Adaptive Transitions for Automation in Cars, Trucks, Busses and Motorcycles; Intelligent Transport Systems (got invited for a journal track after the ITS World Congress)
  • How do oncoming traffic and cyclist lane position influence cyclist overtaking by drivers? – Shown at ICSC and submitted to AAP journal
  • Radar Interference Mitigation for Automated Driving – IEEE Signal processing magazine
  • How do drivers negotiate intersections with pedestrians? Fractional factorial design in an open-source driving simulator – AAP
  • Modelling discomfort: How do drivers feel when cyclists cross their path? – AAP

Driver/passenger activity mapping. FFI funded DRAMA project (2018-2020) addresses knowledge building around activity identification of drivers and passengers in vehicles to improve interaction between them and the vehicle. Mapping and detecting activities at drivers and passengers is important for both UX and traffic safety. With knowledge about activites, the HMI can be adjusted to, the currently most efficient modality. If the vehicle knows the body posture of the passengers safety functions such as airbags, brakes and steering system can be adjusted by the safety systems in the vehicle. The project develops a system that can recognizes individual and interaction activities of driver and passengers in vehicles of high level of automation (SAE3+). The project studies from literature the most relevant activities of driver and/or passenger in highly automated vehicles in terms of safety and comfort. The developed prototype acquires input data from multiple cameras mounted in the cabin of a vehicle and classify the detected activities according to the chosen in-cabin activities of interest. Machine learning algorithms are used to extract timeseries of activity features including: Body poses, head position/eye gaze/face landmark, objects, dense optical flow, and detected activity/interaction. The work is a collaboration between RISE AB and Smart Eye AB. For more information contact Thanh Hai Bui (thanh.bui@ri.se) at RISE, or Henrik Lind (henrik.lind@smarteye.se) at Smart Eye AB.

Mimicking professional bus drivers. Scania and KTH Royal Institute of Technology are currently researching motion planning algorithms for autonomous buses driving in cities. The research has so far discovered that current motion planning approaches, which are suitable for passenger vehicles, are not successful at driving buses in cities. The problem arises due to the large dimensions of buses, but mostly due to the particular chassis configuration, where the wheelbase length is much shorter than the vehicle length, resulting in large vehicle overhangs. The research then focuses on how to use these overhangs to increase the maneuverability of buses driving in cities. The result is a new motion planning approach which allows buses to briefly drive with the overhangs outside of the road and over curbs, in order to drive along narrow roads and sharp turns, while ensuring the safety of the drive. The first results of this work have been recently published in the Intelligent Transportation Systems Conference 2019. The paper can be accessed via IEEE here, or arXiv here, and a video of the results here. This work was partially supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation. For more information contact Rui Oliveira (rui.oliveira@scania.com) from the KTH Royal Institute of Technology.

CoEXist is a European project (May 2017 – April 2020) which aims at preparing the transition phase during which automated and conventional vehicles will co-exist on cities’ roads. CoEXist aims at enabling mobility stakeholders to get “AV-ready” (Automated Vehicles-ready). To achieve its objective, CoEXist have developed an assessment framework including both microscopic and macroscopic traffic models that take the introduction of automated vehicles into account. The tools developed in the framework of CoEXist are tested by road authorities in the four project cities: Helmond (NL), Milton Keynes (UK), Gothenburg (SE) and Stuttgart (DE) in order to assess the “AV-readiness” of their local-designed use cases. Swedish partners in the CoEXist project is VTI and the City of Gothenburg. Preliminary results from the traffic modelling show decreases in traffic performance in an introductory stage with lower penetration rates and AVs with limited capabilities and cautious driving logics while higher penetration rates of more advanced AVs leads to a modal change from public transport to private cars. Final event will be held in Milton Keynes (UK) on 25-26 March 2020, Homepage: https://www.h2020-coexist.eu/. Contact Johan Olstam (johan.olstam@vti.se) for more information.

SMART. The aim of the SMART project (Simulation and Modelling of Automated Road Transport) is to enhance and further develop todays state-of-the-art traffic models in order to enable analysis of future traffic systems. The project consists of two PhD projects, one focusing on microscopic traffic simulation and the behaviour of and interaction between conventional and automated vehicles, and one focusing on mesoscopic simulation and fleets of automated vehicles for public transport operations. The licentiate thesis Simulation based evaluation of flexible transit was presented by the PhD student David Leffler on June 13th, 2019. The project is carried out by VTI, KTH and LiU and is funded by Trafikverket via Centre for Traffic Research (CTR). Contact Johan Olstam (johan.olstam@vti.se) or Wilco Burghout (wilco@kth.se) for more information.

PLATT – Policylab för Autonoma Transporttjänster. Inom ramen för DriveSweden (Vinnova) har PLATT har Volvo GTT, Einride, Combitech och RISE bedrivit policyutveckling tillsammans med offentliga och kommersiella aktörer inom transportnäringen. Därigenom har vi identifierat en rad utmaningar som de sökande står inför. Det handlar både om att kunna budgetera för ansökan i form av kostnad och ledtid men också hur man vet vad som ska ingå i en ansökan. Men vi har också sett en rad olika strategier för att hantera den osäkerheten. Dels beprövade strategier som använts både specifikt inom fordonsutvecklingen och generellt inom svensk myndighetsutövning, dels nya strategier som sätter fingret på hur man kan hantera säkerheten vid införande av ny teknologi utan att hämma innovationstakten. Genom att bjuda in brett till projektets aktiviteter har vi också samlat på oss många praktiska tips på hur man som sökande både kan påverka hur lång tid det tar att få igenom en ansökan men också mängden arbete man behöver lägga ner på en framgångsrik ansökan. Tipsen belyser också aspekter som inverkar gynnsamt på hur försöksverksamheten uppfattas av omvärlden, t.ex. räddningstjänsten och allmänheten. Här hittar ni slutrapporten och projektets hemsida. För mer information kontakta Håkan Burden på RISE (hakan.burden@ri.se). 

Driving automation state-of-mind: Using training to instigate rapid mental model development. I takt med att automatiserade funktioner blir alltmer avancerade och vanliga, ökar också kraven på användarens (förarens) förståelse för korrekt användning. Inte förrän den mänskliga föraren helt kan ersättas kommer förarens förståelse av systemen vara en kritiskt komponent i att fordonet (människan tillsammans med de automatiserade systemen) framförs säkert på vägen. Finns det då något sätt att snabb-träna förare i hur man ska använda sådana system? Den nyligen publicerade studien ämnade undersöka just detta. Tidigare forskning inom förarträning och inlärning kombinerades till en tränings-metodik som sedan inkorporerades i ett träningsprogram ämnad att träna noviser i användningen av ett hypotetiskt förarassistanssystem motsvarande SAE Level 2. Resultaten indikerade inte bara att automations-träning av förare är möjlig, utan kanske viktigast av allt att de tränade förarna i betydligt större utsträckning var benägna att ingripa i situationer som krävde det (baserat på systemets begränsningar) jämfört med deras otränade motparter. Studien gjordes inom ramen för FFI-projekt HATrick. För mer information kontakta Martin Krampell (krampell@gmail.com).

PRoPART finalized. After 24 months of work, H2020 project „PRoPART”, funded by the European Global Navigation Satellite System Agency (GSA), was successfully closed. The 7 consortium partners, coming from 4 European countries have developed an RTK (Real Time Kinematic) software solution by both exploiting the distinguished features of Galileo signals as well as combining it with other positioning and sensor technologies. RTK gives the possibility of cm-level accuracy using correction data from reference stations. The innovation developed during the project can be a game changer for the future mass market of autonomous transport. The final demonstration was done in November at AstaZero and here you can see a movie and presentation material. The project was coordinated by RISE with partners from across Europe, including Scania, AstaZero and Waysure. For more information contact Stefan Nord at RISE (stefan.nord@ri.se).  

PERCEPTRON är ett FFI-projekt är ett samarbete mellan Volvokoncernen, Semcon och Chalmers som avslutas nu vid årsskiftet. Målsättningen med PERCEPTRON har varit att ta fram ett koncept för kontinuerlig datadriven utveckling vilket inbegriper infrastruktur för att ta hand om loggad data, design av neurala nätverk, träning och validering. Ett resultat av projektet är tre neurala nätverk att exekvera i fordonet för objektdetektering, detektering av filmarkeringar och vägdetektering. Nätverken har tränats på insamlad och annoterad data för lastbil på svenska vägar. En översiktlig utvärdering av hårdvara och programvara för användande neurala nätverk har också gjorts för att ge vägledning åt utvecklare. För ytterligare information kontakta projektledare Carlos Camacho, Volvokoncernen.

PRELAT är ett FFI-projekt som slutar vid årsskiftet efter fem års samarbete mellan Volvokoncernen och Chalmers. Projektet har arbetat med fully convolutional neural network för fusion av kamera och lidar i syfte att uppnå robust vägdetektion och klassificering av vägmarkeringar för lateral filhållning. Ett tidigt resultat pekar på nyttan av använda lidar för snabb och noggrann vägdetektion. Ett annat resultat från PRELAT är på vilken detaljnivå fusion av kamera och lidar bör utföras. Slutligen är ett tredje resultat hur semi-supervised training kan utformas i syfte att minska mängden kostsam annotering. PRELAT och PERCEPTRON har varit en del av den snabbt expanderande utvecklingen och användningen av neurala nätverk inom fordonsindustrin. Resultaten har bidragit med ökad förståelse och kommer att användas i framtida projekt i Volvokoncernen. För ytterligare information hänvisas till projektledare Martin Sanfridson, Volvokoncernen

Universally designed mobility for increased accessibility to societal functions. A consortium of organisations in West Sweden (Västra Götalandsregion, Västtrafik, RISE, Norconsult Astando AB, with user organisations SRF and DHR) have collaborated on a number of projects with the vision of working towards autonomous and universally designed mobility for increased accessibility to societal functions. A series of projects performed by the consortium have explored the following subjects:

  • Samverkande system för sjukresor och sjukhus (eng. Cooperative systems for medical journeys and hospitals). How a System-of-systems approach can be utilised to bridge accessibility gaps when making service journeys between public transport and hospital departments. (funded by Vinnova FFI)
  • Autonoma skyttelbussar för ökad tillgänglighet till viktiga samhällsfunktioner (eng. Autonomous shuttle busses for increased accessibility to important societal functions). Pre-study for a trial of autonomous shuttle-busses at Sahlgrenska Hospital in Gothenburg. (funded by Västra Götalandsregion kollektivtrafiknämnden)
  • Guidning till autonoma fordon för blinda, döva och dövblinda (eng. Guidance to autonomous vehicles for persons with blindness, deafness and deaf-blindness) Guiding for journeys with autonomous vehicles for people with blindness, deafness and deaf-blindness. (funded by Drive Sweden – Vinnova, Energimyndigheten och Formas)

A combination of methods including design-thinking workshops, user-trials, field studies, service-design methods and innovation processes have been utilised to ensure that user needs have been clearly understood and taken into consideration in design of potential solutions. The studies have resulted in increased understanding of the needs of users with visual impairments in autonomous transport systems and how public authorities can contribute to designing services that reduce barriers to independent travel. A large number of service improvements and solutions have been identified. Methods for using vibro-tactile communication to guide users with visual impairments to public transport have been evaluated. A plan for a one year test of autonomous busses in a hospital environment is undergoing an approval process within the regional authority. The insights gained from these projects have already begun to create value. Many solutions can be applied to existing public transport solutions. However to create future transport solutions which are created with accessibility for all from the outset, the results require more communication for example to vehicle manufacturers, city and public transport planners and more. For more information contact Steve Cook at Norconsult (Steve.Cook@norconsult.com). 

What happens to self-driving cars if the weather turns bad? Current systems offer comfort and safety in good weather. However, they often fail to sense its surroundings in visibility conditions with heavy rain, snow or fog causing the automated systems to stop their support. The DENSE project, under the ECSEL joint undertaking and co-financed by EU and national funding bodies, addresses this key challenge of autonomous driving by developing an environment perception technology that extends the performance of sensors in adverse visibility conditions. The project designs, tests and validates a generic sensor suite that enables driver assistance systems and autonomous driving systems to operate also in adverse weather. The DENSE 24/7 all-weather sensor suite combines Radar, Short-Wave Infrared (SWIR), gated camera sensor, and LIDAR. In addition, a mobile Road State Sensor assesses the road surface conditions. For maximizing efficiency, DENSE implements a high-level fusion platform integration between the individual sensors. DENSE use artificial neural networks to fuse all sensor information at pixel level, leading to an enriched and enhanced multi-spectral image. The system has been integrated in a test vehicle and demonstrated under controlled conditions in a weather chamber and evaluated under real-life conditions in Central and Northern Europe. Project duration is between June 2016-February 2020. There are 15 project partners with Daimler as coordinator. For more information visit the project website or contact Jan-Erik Källhammer at Veoner (jan-erik.kallhammer@veoneer.com).

Projekt Automatiserad vägdrift med kortnamn ”Barmark” har som målsättning att genom automatisering av drift- och underhållsfordon bidra till förbättrad arbetsmiljö, ökad resiliens samt minskade säsongsvariationer vid val av transportslag. Projektet tar fram ett fordon som kör och navigerar självständigt längs en definierad rutt samtidigt som det utför ett arbetsuppdrag och interagerar med omgivningen. Inom projektet sker fordonsanpassning exv. av bromssystem, midja och EHI styrning, utveckling och anpassning av sensorsystem exv. drönarburna radarsystem, ultraljud, GPS/Video samt utveckling och anpassning av webbaserad front-end med loggning av fordon med förare i trafik. Vidare utförs analys av infrastruktur och testscenarier inför projektdemonstrationer som kommer utföras kommande vinter- och sommarsäsong. Projektgruppen utgörs av RISE, Semcon, CIT, Peab, Swevia, Skanska, Svensk Markservice, Trafikverket, Alkit, Teade, AstaZero och Lundberg Hymas, där RISE är koordinator. Projektet pågår 2018-05-01 till 2020-08-30 och finansieras av det strategiska innovationsprogrammet InfraSweden2030, en gemensam satsning av Vinnova, Formas och Energimyndigheten samt av projektpartners. For mer information kontakta Viveca Wallqvist på RISE (viveca.wallqvist@ri.se). 

Användargränssnitt för att upptäcka oskyddade trafikanter I syfte att förbättra tilltro och acceptans för SAE nivå 3. I EU-projektet BRAVE, Bridging gaps for the adoption of Automated VEhicles som koordineras av VTI, Statens väg- och transportforskningsinstitut, bedrivs forskning för att bidra till förbättrad säkerhet och acceptans av automatiserade fordon. I projektet har VTI under hösten genomfört en studie i körsimulatorn Sim IV på Lindholmen i Göteborg. Bakgrunden till studien är att implementering av automatiserade körsystem på SAE nivå 3 i urbana miljöer utgör en utmaning, i det att återkommande och svårförutsägbara interaktioner mellan fordon och oskyddade trafikanter behöver hanteras. För att adressera utmaningen har projektet utvecklat ett koncept för användargränssnittet som håller föraren informerad om närvaron av oskyddade trafikanter i den närliggande omgivningen. Genom att göra denna typ av information tillgänglig för föraren ges hen möjlighet att avsluta uppgifter av sekundär karaktär, såsom att se på film och liknande, och i samarbete med systemet övervaka körningen fram till dess att det är säkert att återgå till sekundära uppgifter. I körsimulatorstudien fick deltagare med och utan erfarenhet av supportfunktioner på SAE nivå 2 köra i en urban miljö samtidigt som dom kunde titta på film. Nivån av information angående oskyddade trafikanter varierades över fyra betingelser: (1.) ingen information, (2.) en varning för att förmå föraren att återta kontroll när en kollision var nära förestående, (3.) en förvarning som meddelade om närvaron av oskyddade trafikanter, samt (4.) kombination av varnings- och förvarningskoncepten. Studiens resultat visar att en strategi för användargränssnittet som integrerar förvarnings- och varningsmeddelandet är den lösning som är att föredra för att förbättra säkerheten, samtidigt som förarens tilltro till systemet förbättras. Vidare visade studien att tidigare erfarenhet av SAE nivå 2 är avgörande för om strategin fungerar eller inte. Resultaten stödjer design av användargränssnitt för automatiserade körfunktioner baserat på behov, preferenser och förmågor hos förare för att säkerställa bättre acceptans och säkerhet. För mer information om projektet kontakta Niklas Strand, Ignacio Solis Marcos eller Ingrid Skogsmo på VTI eller se www.brave-project-eu eller följ projektet på Twitter @BRAVE_H2020 

Drive Sweden Forum 2019

I går 12 september gick årets Drive Sweden Forum av stapeln med ca 270 deltagare. Drive Sweden är ju ett av 17 strategiska innovationsprogram (SIP) som finansieras av Vinnova, FORMAS och Energimyndigheten. Lindholmen Science Park är värdorganisation med Sofie Vennersten som programledare och Jan Hellåker som ordförande och har mer än 120 partners från 13 länder – 4 nya medlemmar presenterades på konferensen. Programmet blir alltmer internationellt, med samverkan såväl i EU- finansiering som gemensamma projekt. Man har också nu en person i Silicon Valley och har samarbete med Singapore.

Drive Sweden finansierar lite mer banbrytande projekt inom hållbar mobilitet, som exempelvis KOMPIS, LIMA och KRABAT. Man ger också ut nyhetsbrevet Smart Mobility samt har ett antal andra aktiviteter. Man gör nu ett omtag och lanserar en ny struktur, med delarna Society Planning, Digital Infrastructure, Policy Development, Business Models och Public Engagement, med fokus på såväl person- som godstransporter. Man har nu en öppen utlysning Innovationer för ett digitaliserat och automatiserat transportsystem för människor och gods som stänger 5 november.

Här korta sammanfattningar från några av konferensens föredrag.

David Green från Lynk & Co pratade om företagets vision att förändra mobilitet med hjälp av digitalisering för att ge en bättre kundupplevelse. För detta krävs samverkan med externa parter och man har skapat en öppen samverkansplattform colab.lynkco.com.

Ulrik Janusson och Marie Bemler från Scania visade några framtida möjliga scenarios för digitalisering inom godstransporter. Två viktiga parametrar är öppenhet i delning av data och hur mycket klimatfrågan slår igenom.

Hur kan man samverka med allmänheten när man designar framtida mobilitetstjänster och därmed nå en bättre acceptans för till exempel självkörande fordon? Detta har Vaike Fors från Högskolan i Halmstad studerat. En lärdom är att man måste gå bortom att bara titta se ”användare” och ”stadsinvånare” till att se alla som människor med olika behov, kunskaper och värderingar.

Våra kollegor Kent Eric Lång och Håkan Burden från RISE Viktoria berättade om policy-labbprojektet PLATT som tittar på möjliga strategier för att underlätta för självkörande fordon även från nya aktörer. En viktig strategi är att kunna bygga förtroende, trust, istället för tidigare typgodkännande-rutiner. Projektet är snart slut och man söker nu nya initiativ runt policy-utveckling.

Samtidigt måste samhället kunna hantera både att skapa goda näringslivsförutsättningar för ny teknologi och också bibehålla och förbättra säkerheten i trafikmiljön och därmed bygga förtroende, vilket Anna Fridén från KOMET, Kommittén för teknologiskt innovation och etik som den svenska regeringen tillsatt, berättade om.

Stefan Myhrberg från Ericsson talade om digital infrastruktur för automatiserade fordon, där man bland annat etablerat Drive Sweden Innovation Cloud, där Drive Sweden-medlemmar kan lagra och dela data från fordon, infrastruktur, parkeringsplatser, kameror etc. 5G är då en möjliggörare för att tillräckligt snabbt hantera de stora datamängderna som krävs när många enheter blir uppkopplade.

Olof Johansson från Trafikverket visade en ny färdplan för ett uppkopplat och automatiserat vägsystem. Färdplanen har identifierat 20 åtgärder i 4 kluster: Ökad kunskap om automatiseringens effekter (t.ex. tester och demonstrationer), Effektivt utnyttjande av kapacitet (t.ex. MaaS), Hållbart och säkert transportsystem genom digitalisering (t.ex. miljözoner) och Nya planeringsstöd för ökad användbarhet (t.ex. simuleringsmodeller). Nästa steg är att implementera åtgärderna. Suzanne Andersson från Trafikkontoret i Göteborg pratade om några utmaningar som då uppstår för samhällsplanerarna, som att städer utvecklas långsamt och man måste ta hänsyn till kommungränser.

En svårighet är att hitta och välja rätt affärsmodell för nya mobilitetslösningar. Rami Darwish från KTH berättade om ett affärsmodell-labb som man jobbar med inom ITRL ihop med Sustainable Innovation. I en paneldiskussion med Li Höglund från SnappCar, Stina Wärn från Folksam, Ulf Hammarberg från DHL och Mikael Rönnholm från CEVT, ledd av Roland Elander från Sustainable innovation, diskuterades detta. En nyckel är att lyssna till användarna och att vara beredd att göra snabba ändringar. Data från fordon och tjänster är också viktiga informationskällor. Men informationen måste då skyddas från intrång. Även regelverken måste kunna anpassas snabbt, med elsparkcyklar som ett aktuellt exempel. E-handel är ett annat område där affärsmodellerna behöver anpassas att bli både mer hållbara men ändå lönsamma. För industrin behöver affärsmodeller och leverantörskedjor också bli mer öppna att inkludera även lösningar från små entreprenörsföretag. Utvecklingen går både fortare och långsammare, beroende på område, än vad många tror. Man måste alltså jobba både kort- och långsiktigt.

Martin Svensson från AI Innovation of Sweden pratade om AI i det framtida transportsystemet, på komponent-, system- och samhällsnivå. Det finns stora möjligheter men mycket återstår att göra. Mats Nordlund från Zenuityvisade exempel på hur de använder AI och maskininlärning i sin verksamhet.

Joakim Jonsson från Volvo Bussar berättade om arbetet med autonoma stadsbussar som är kopplat till KRABAT-projektet. Man kan inte börja med att köra helt autonomt utan har identifierat 3 möjliga användningsfall: hållplatskörning, busståg och rangering i bussdepå. Se filmen nedan.

Svensk forskning imponerar

Som utlovat så kommer här en sammanställning av relevant svensk forskning. Den är långtifrån heltäckande, dock inte mindre imponerande för det. Den visar på både bredd och djup samt det unika samarbetet som vi har mellan olika aktörer. Stort tack för alla bidrag! // As promised before, here comes a summary of relevant Swedish research. It is far from comprehensive, yet very impressive. It shows both depth and width, and the unique collaborative environment that we have in Sweden. Thanks to all contributors!

Sound design for self-driving cars. The recently started FFI project Sound Interaction in Intelligent Cars explores the role of sound in enhancing user experience during unsupervised autonomous driving. The work focuses on a set of design challenges that could have important effects on people’s willingness to use and buy self-driving cars, including lack of trust in the new technology and increased risk of motion sickness. For instance, the project examines the potential for sound to subtly inform users about upcoming vehicle maneuvers before they actually take place, allowing the users to better anticipate the vehicle’s imminent behavior. In addition to addressing established challenges, the project identifies and examines completely new ways to use sound and meet users’ needs in an environment where they no longer have responsibility as drivers. The work is a collaboration among Volvo Cars, RISE, and the audio production company Pole Position Production and will result in prototypes of complete sound design solutions for self-driving cars. The solutions will be evaluated with users in a VR setting as well as in a real demo car during 2020. For more information contact Fredrik Hagman at Volvo Cars (fredrik.hagman@volvocars.com). 

Adapting new city districts for autonomous vehicles. Halmstad University, together with ten other organisations in seven different countries, has received EU funding for a new research project for the development of smart cities. The project aims to facilitate the planning and development of new city districts so that they are adapted for electric autonomous vehicles. The project is called SUV (Stimulating the Up-take of Shared and Electric Autonomous Vehicles by Local Authorities) and brings together universities, transport organisations and municipalities for a sustainable development of urban environments. Halmstad University will in the project contribute with technologies for connected and collaborative autonomous vehicles. One example of such technology is the communication between vehicles, as well as between vehicles and the infrastructure. The University will also contribute with technical competence in modelling different scenarios with autonomous vehicles. Examples of these scenarios are the traffic flow in cities and how to connect autonomous driving in different environments, such as between a restricted harbour area and the public road network. Varberg municipality is also a project partner. For more information contact Magnus Jonsson (magnus.jonsson@hh.se) at Halmstad University.

System-av-system för effektiv hantering av nödsituationer. HIEM (Holistisk och integrerad nödsituation hantering med hjälp av avancerad teknik och utrustning vid trafikolyckor) är ett Vinnovafinansierat bilateralt projekt med Kina, och SoSER (System av system för effektiva räddningsinsatser och mobilitet i städer) är ett Vinnovafinansierat projekt inom system-av-system för urban mobilitet (SoSSUM). Båda dessa projekt handlar om effektiv hantering av nödsituationer men med olika fokus. I HIEM avser vi utveckla avancerad teknik för hantering av nödsituationer som inkluderar prehospital diagnostik, sjukhusval, navigering av utryckningsfordon, smart infrastrukturanpassning, kontroll av trafikflöden och hantering av trafikstockningar, trådlöskommunikation och systemintegration. I SoSEER fokuserar vi på system-av-system (SoS) och utvecklar SoS metoder för räddningsinsatser, inklusive arkitektur, modellering, simulering och integration.  Tillsammans kommer projekten att leverera ett effektivt system-av-system för räddningsinsatser som förbättrar mobilitet i städer vid trafikolyckor, och bidra till utveckling av framstående kunskapsbas i Sverige och utbildning av specialister inom området system-av-system. Både HEIM och SOSEER involverar fyra forskningsinstanser (Chalmers tekniska högskola: trafikflödesstyrning; RISE: systemintegration; Uppsala universitet: optimal ruttval; och VTI: trafiksäkerhet och nödhantering) och fyra industriaktörer (Medfield Diagnostics AB: utrustning för snabb prehospital diagnostik; H&E Solutions: fordonsutrustning för trådlöskommunikation; WSP AB: Intelligent infrastruktur och tjänsteleverantör; FellowBot AB: platsplanering för nödfordon). Det kinesiska forskarteamet leds av Changjiang Professor Wei Wang som är en av de mest inflytelserika transportforskarna i Kina med över 30 års erfarenhet inom nödhantering. Projekten kommer att pågå i tre år från 2019-04 till 2022-04 och välkomnar intressenter inom räddning och sjukvård att ta kontakt med konsortiet för diskussion och utveckling. För mer information kontakta Xiaobo Qu (xiaobo@chalmers.se) på Chalmers eller Lei Chen (lei.chen@ri.se) på RISE.

Hur upplevs olika körstilar? I slutet av FFI-projektet HaTric (Användargränssnitt för automatiserade fordon) genomförde Design & Human Factors försök på AstaZero med Wizard-of-Oz-bil från Volvo Cars. En Wizard-of-Oz-bil är gjord för att upplevas som helt självkörande, men framförs i verkligheten av en dold testförare i baksätet. Under försöket fick deltagarna uppleva två olika körstilar med fordonet som körde en bana med ett antal vanliga trafiksituationer. Fordonet körde ett varv med en mer offensiv stil och ett varv med en mer defensiv stil. Deltagarna fick skatta tillit i de olika situationerna och de intervjuades om sin uppfattning om hur fordonet uppförde sig och fungerade. Nu har vi analyserat klart resultaten från studien och några intressanta slutsatser är att människors tillit till fordonet påverkas mycket av situationerna, t.ex. om det finns oskyddade trafikanter med i situationen. Det var inte en körstil som upplevdes som mest tillitsskapande i alla situationer, men på det stora hela föredrog deltagarna den mer defensiva stilen. När det gällde deltagarnas förståelse och mentala bild av fordonet så byggde deltagarna tydligt upp en omfattande bild av hur fordonet fungerade och tänkte på baserat den väldigt begränsade input de fick. De tolkade in tekniska funktioner och komponenter, egenskaper, förmågor och till och med personlighet baserat på fordonets körning i de olika situationerna. För mer resultat, håll utkik efter kommande publikationer i Transportation Research Part F och licentiatsseminarier under hösten. Kontaktperson är Lars-Ola Bilgård (lars-ola.bligard@chalmers.se) på Chalmers. 

NPAD (Nätverks-RTK Positionering för Automatiserad Körning) är ett FFI-projekt som löper från maj 2018 till april 2020.Projektets mål är att möjliggöra Nätverks-RTK GNSS-positionering för ett stort antal mobila plattformar genom att tillämpa den standard som utvecklats av 3GPP samt anpassa Lantmäteriets befintliga infrastruktur (SWEPOS). Nätverks-RTK är en GNSS-teknologi som har potential att kunna svara mot krav på kostnad, noggrannhet och tillgänglighet. Denna teknologi bygger på att korrektionsdata från en fast referensstation kan tas emot av GNSS-mottagaren. Dagens distribution av korrektionsdata är inte byggt för en massmarknad av t.ex. automatiserade fordon eller smartphones. 3GPP arbetar nu med standardisering kring hur korrektionsdata skulle kunna distribueras via mobilnätet vilket skulle kunna möjliggöra positionering på cm-nivå för en massmarknad.  Projektet syftar till att sammanställa kravbilden utifrån automatiserade fordon, undersöka hur befintliga system för distribution av korrektionsdata skall anpassas och hur en komplett arkitektur skall se ut för distribution via mobilnätet. En demonstrator skall tas fram för att utföra tester och demonstrera tekniken dels på AstaZero och dels längs utvalda vägsträckor. Testerna skall validera den tekniska lösningen och testa både basstationsbyte och skifte mellan referensstationer.Projektet koordineras av RISE och övriga deltagare är AstaZero, Caliterra, Einride, Ericsson, Lantmäteriet, Scania, AB Volvo och Waysure. För mer information kontakta Stefan Nord (stefan.nord@ri.se) på RISE. 

Positionering på AstaZero. A0REF består av 3st Nätverks-RTK referensstationer monterade på tre olika ställen på testanläggningen AstaZero. Dessa har i samarbete mellan Lantmäteriet, MT och AstaZero placerats på AstaZero för att erbjuda referenspunkter med en noggrannhet på mm-nivå (s.k. ankarpunkter). Dessa kan sedan användas för att mäta in andra objekt på banan eller mätinstrument för att mäta på fordon, t.ex. position och hastighet, med spårbar noggrannhet. För mer information kontakta Stefan Nord (stefan.nord@ri.se) på RISE. 

Implementering av självkörande bilar: Överblick av problem och möjligheter avseende samhälleliga och etiska aspekter är ett projekt vid Institutet för Framtidsstudier i samarbete med KTH, som löper under delar av 2019 och 2020 inom ramen för Trafikverkets forskningsprogram ”Vision Zero Academy”. Som projekttiteln antyder är målet med projektet är att analysera etiska och samhälleliga aspekter avseende implementeringen av självkörande fordon. Projektet syftar å ena sidan att ge en bred överblick över vilka etiska frågor som förtjänar att belysas ytterligare. Å andra sidan kommer projektet bidra till att genomföra två djupare analyser av två sådana frågor. Först kommer vi analysera etiska maskinbeslut med avseende på självkörande fordon. Sedan kommer vi att analysera ansvarsfrågor rörande informationsflöden och människors personliga integritet. För mer information besök projektets websida eller kontakta Björn Lundgren (bjorn.lundgren@iffs.se) på Institutet för Framtidsstudier. 

Human Interaction with Automated Vehicles in Cities. This topic will be addressed in a new EU-project called Supporting the interaction of Humans and Automated vehicles: Preparing for the Environment of Tomorrow (SHAPE-IT) that will start in October 2019 and be coordinated by Chalmers. The main objective of SHAPE-IT is to facilitate safe, acceptable (and, ideally, desirable) integration of user-centred and transparent AVs into tomorrow’s mixed urban traffic environments, using both existing and new research methods, designing advanced interfaces and control strategies. This project spans three complementary facets of AV/human factors research: 1) understanding the behaviour of different road-users (inside and outside AVs) when interacting with AVs, investigating cognitive processes, predictability, trust, acceptance and safe interaction following an initial, and long-term exposure to AVs; 2) researching design strategies for the interfaces used for communication and interaction between AVs and humans (inside and outside AVs), and 3) integrating knowledge on human/AV interactions into models to perform prospective mixed traffic-AV safety assessments. As Artificial Intelligence (AI) is a core technology for AV development, in this project, we will also seek to integrate knowledge of human factors with that of AI in AV development, reducing the gap between human-factors and AI scientists, and AV software developers. Fifteen PhD-students will be performing research in the project (the recruitment is ongoing), together with their academic and industrial supervisors. For more information visit the project website or contact Jonas Bärgman (jonas.bargman@chalmers.se) at Chalmers.

Kunskapsunderlag om uppkopplade, samverkande och automatiserade fordon, farkoster och system. Under våren har Trafikanalys haft regeringens uppdrag att ta fram ett trafikslagsövergripande kunskapsunderlag som belyser utmaningar och möjligheter med uppkopplade, samverkande och automatiserade fordon, farkoster och system. Nu har detta publicerats i en rapport som hittas här. Där konstateras bland annat att utvecklingen kommer att ha störst påverkan på vägtrafiken, dels för att denna delsektor är ekonomisk störst och dels för att nyttorna blir mest påtagliga där. Det finns också risk för negativa effekter, som exempelvis risk för ökad vägtrafik som kan motverka de positiva effekterna och bidra till ett mer utspritt boendemönster och försämra underlaget för kollektivtrafik. Delat resande kommer att bli mycket viktigt för att lyckas begränsa den förväntade trafikökningen i urbana miljöer. Vidare konstateras det att utvecklingen rymmer också en rad potentiella målkonflikter; mellan ett kostnadseffektivt och integrerat transportsystem respektive samhällets sårbarhet för extrema risker, mellan enkel och effektiv datakommunikation respektive datasäkerhet, och mellan en storskalig tillgång till data för verksamhetssamordning respektive integritetsrisker. En rekommendation från studien är att det nationella ansvaret för riskhantering klarläggs och att resurser sätts av. Beaktat de osäkerheter som finns om den framtida utvecklingen konstateras att en bred palett av styrmedel kommer att behöva analyseras inför framtiden. För mer information kontakta Lennart Thörn (lennart.thorn@trafa.se) på Trafikanalys. 

Autobike – självkörande cykel. Syftet med studentprojektet Autobike är att utveckla en självkörande cykel som ska användas i testmiljöer för autonoma bilar. Innan autonoma bilar lanseras på marknaden testas de i testmiljöer för att säkerställa att de fungerar som de ska och till exempel kan väja för en cyklist som dyker upp helt oväntat.  Projektet sker i samverkan mellan Mälardalens högskola, Chalmers, AstaZero, Cycleurope och Volvo Cars. Under hösten och våren har studenterna arbetat med alltifrån val av cykel och utvecklingen av elektroniken, mjukvaran, programmeringen och mekaniken, till implementering av kontrollsystemet och testning av cykeln. Att få cykeln att balansera var inte det enklaste. Utvecklingen fortsätter efter sommaren. Här och här hittas mer information. 

V-Com. It is a precautionary system that communicates safety-critical information between truck drivers and vulnerable road users that was presented by six final year MSc students from Blekinge Institute of Technology and Stanford University together with Volvo Group Connected Solutions and its Silicon Valley based Innovation Lab Hub at this year’s Stanford EXPE – design experience. In Stanford’s capstone project, ME310, which runs from October to June, they move in a Design Thinking process through phases of needfinding, ideation, prototyping and more to arrive at a final detail designed product to display at the final exhibition, the EXPE. V-Com is a system of sensing, computation and communication components that the students mounted as an add-on on a truck. For more information visit this site or contact Jenny Elfsberg (jenny.elfsberg@volvo.com) at Innovation Lab Hub US at Volvo Group. 

Nytt från svensk forskning

Automated Speed and Lane Change Decision Making using Deep Reinforcement Learning. This paper introduces a method, based on deep reinforcement learning, for automatically generating a general purpose decision making function. A Deep Q-Network agent was trained in a simulated environment to handle speed and lane change decisions for a truck-trailer combination. In a highway driving case, it is shown that the method produced an agent that matched or surpassed the performance of a commonly used reference model. To demonstrate the generality of the method, the exact same algorithm was also tested by training it for an overtaking case on a road with oncoming traffic. Furthermore, a novel way of applying a convolutional neural network to high level input that represents interchangeable objects is also introduced. The paper was presented at the International Conference on Intelligent Transportation Systems (ITSC) in the beginning of November 2018, and a preprint is available at arXiv. For more information contact Carl-Johan Hoel (carl-johan.hoel@volvo.com) at Volvo Group Trucks Technology. 

Självkörande fordon och kollektivtrafik – Hot och möjligheter är ett projekt som undersöker effekter av självkörande fordonsteknik på transportsystemsnivå (med hjälp av bland annat Visum och Sampers). Projektet är finansierat av SLL, löper under 2018-2019 och använder Stockholms län som studieobjekt. Några av de nyckeltal man undersöker är bland annat förändringar i marknadsandel, trängsel och utsläpp. Totalt kommer sex olika framtidsscenarier undersökas med antaganden om ny teknik för både personbilar och för kollektivtrafiken, bl a first/last mile-lösningar och självkörande robotaxis. För tillfället (december 2018) är projektet inne i sista fasen av att fastställa nyckeltal, scenarier och metod men kommer under våren 2019 börja modellera scenarierna. De första resultaten förväntas till sommaren men arbete pågår fram till mitten av hösten. Kontaktperson för projektet är Erik Almlöf (erika5@kth.se) på Integrated Transport Research Lab på KTH.

Tillit till intelligenta bilar. Första studien av oövervakad automatiserad körning på allmän väg har genomförts i samarbete mellan Volvo Cars, RISE Viktoria och Halmstad Högskola inom det FFI-finansierade forskningsprojektet ”Trust in Intelligent Cars” med Volvo Cars testfordon WOz. Genom att mixa etnografi och experimentellt upplägg har en funktion för automatiserad körning (aktiverad under vissa sträckor) utforskats för en typisk pendlares vardag i Göteborgsområdet. Totalt 19 resor genomfördes av 5 pendlare och resultaten visar på hur en sådan funktion upplevs och hur den beter sig under verkliga trafikförhållanden. För mer information kontakta projektledare Annie Rydström (annie.rydstrom@volvocars.com) eller Jonas Andersson (jonas.andersson@ri.se).

Metodutveckling. Med stöd från det FFI-finansierade TIC-projektet, KK-finansierade AIR-projektet och Vinnovas AstaZero utlysning har en explorativ studie på AstaZeros testbana genomförts av RISE Viktoria med Volvo Cars testfordon WOz med syfte till att testa olika sensorers förmåga att fånga användarupplevelse över tid. Genom att testpersonerna upplevde fordonet två gånger med en veckas mellanrum kunde fordonets nyhetsvärde minska och testpersonernas beteenden stabiliseras. För mer information kontakta projektledare Jonas Andersson (jonas.andersson@ri.se).

Mobilists of the future. A wealth of actors, both private and public, strive to understand and develop the travelling of the future. Together with our clients, we at Intermetra strive to cultivate and share knowledge of the challenges and opportunities that transportation are facing. This year we’ve looked into the customer perspective on three crucial areas: automated vehicles, sustainable fuels and sharing economy. Our study is based on input from more than 550 Swedes. We’ve also used social media monitoring and quick fire Q&As to deepen our understanding of these areas. We have focused on understanding which groups that are most ripe for behavioural change and what contributes to a transition to use more sustainable transportation. The study will be presented in January at Transportforum 2019. For more information contact Anders Lindahl (anders.lindahl@intermetra.se) at Intermetra.

DRAMA – DRiver and passenger Activity Mapping. Idén med DRAMA-projektet är att öka möjligheterna för interaktion mellan ett fordon och personerna i fordonet. Detta genom att ge fordonet mer information om vad de personerna som befinner sig i fordonet gör. DRAMA kommer att ta fram en prototyp till ett system som ska kunna användas i ett fordon. Denna prototyp kommer att använda flera kameror som sensorer. Bilder från kamerorna kommer att analyseras med beräkningsmodeller för personers beteende som är baserade på bildbehandlingsalgoritmer och resultaten från maskininlärning. Exempel på information som ska finnas tillgänglig är ansiktsuttryck, kroppsställning och personernas aktiviteter. DRAMA är ett samarbete mellan RISE Viktoria och Smart Eye AB som pågår under tiden 2018-03-01 till 2020-02-29, med ekonomiskt stöd från Fordonsstrategisk Forskning och Innovation (FFI). För mer information kontakta David Lindström  (david.lindstrom@ri.se) på RISE Viktoria och besök projektets webbsida.

HUGO delivery is a startup developing an AGV (autonomous ground vehicle) for package delivery. The robot will focus on modularity and aims to tackle the problems associated with the last mile in the logistics chain. Today, the last mile of delivering packages is a costly, time consuming and unsustainable part of the value chain of consumer goods. HUGO started a Vinnova funded research project in November 2018 together with the Textile school in BoråsEricssonSomething Borrowed and Sportlala. The goal of the research project is to adapt the HUGO robot for circular textile services and investigate the possibilities to improve the return process both from a consumer convenience and sustainability points of view. The project is expected to be finalized in April 2020. For more information contact Minna Sandberg (minna@berge.io) or Romy van den Broek (romy@berge.io) at Berge / HUGO Delivery.  

SEBRA – SEnsor for Bicycle’s impRoved Awareness. RISE Viktoria, Aptiv och LIRI AB driver tillsammans projektet SEBRA som ska undersöka hur trafiksäkerheten för cyklister kan förbättras genom att minska risken för kollision och konsekvenserna av en kollision mellan cykel och bil eller annat motorfordon. Aptiv utvecklar lösningar inom aktiv säkerhet för fordonsindustrin och LIRI AB är aktivt inom cykelbranschen. Bilar och lastbilar har under senare år utrustats med många olika system för aktiv säkerhet. SEBRA-projektet är ett försök att överföra kunskaper och teknik från denna utveckling till produktutveckling för cyklisters trafiksäkerhet. Ett annat mål med projektet är att förbättra kontakterna och öka samarbetet mellan fordonsindustrin och cykelbranschen. Projektet kommer att ta fram och utvärdera en prototyp där radarsensorer monteras på en elcykel, kombinerat med ett användargränssnitt som ger information till cyklisten om det finns fordon i närheten som ökar risken för kollision. Systemets analys av trafiken i omgivningen och klassificering av vilken risk som olika fordon utgör för cyklisten kommer att vara baserat på dels statistik och litteratur om skador och dödsfall vid kollisioner mellan cykel och bil, och dels på simuleringar av trafikscenarier som kommer att utföras på testbanan AstaZero. SEBRA pågår under tiden 2018-06-01 till 2019-12-31 och har beviljats bidrag från Fordonsstrategisk Forskning och Innovation (FFI). För mer information kontakta Jonas Andersson (jonas.andersson@ri.se) på RISE Viktoria och besök projektets webbsida

Electric Site. Nyligen avslutades forskningsprojektet Electric Site där Volvo Construction Equipment (CE) har elektrifierat och automatiserat delar av en bergtäkt. Lösningen har testats under en 10-veckorsperiod i Skanskas bergtäkt Vikan kross i Torslanda utanför Göteborg. Testerna visar på 98% lägre koldioxidutsläpp, 70% lägre energikostnad och 40% lägre operatörskostnad. Projektet för Volvo CE ett steg närmare framtidsvisionen om tio gånger så effektiva arbetsplatser, med noll olyckor, noll oplanerade stopp och noll utsläpp. Sammantaget stödjer dessa resultat den förutspådda minskningen av den totala driftskostnaden med 25 %. I nuläget är dock minskningen av den totala driftskostnaden bara en prognos. Här kan ni se hur det hela fungerar:

För mer information kontakta Jimmie Wiklander (jimmie.wiklander@volvo.com) på Volvo CE och besök projektets websida

NuMo – New Urban Mobility is a future mobility system developed under a pre-study project ”Urban Infrastructure Opportunities with Autonomous Vehicles” financed by Vinnova through the innovation program InfraSweden2030. NuMo emerges from decades of work across the whole transportation industry including autonomous vehicles, connectivity and electrification. Going beyond today’s time-tabled public transport, NuMo is an on-demand transport system that runs on dedicated infrastructure and allows only certified connected, automated and electric vehicles. Traffic in NuMo is non-stop with very high capacity enabled by vehicle connectivity and control. All stopping is offline or outside the dedicated network. NuMo can be introduced in stages. It starts by integrating with today’s public transport network, and expands with new infrastructure such as bridges, tunnels, and submerged tunnels, and eventually develops into a fully dedicated traffic network. NuMo will make an important contribution to environmental sustainability by accelerating the adoption of electric propulsion, encouraging vehicle sharing, better utilization of vehicles and spaces, reduced construction costs and reduced environmental impacts. The project is coordinated by RISE Viktoria with partners including RISE ECE (Energy and Circular Economy), RISE CBI (Betonginstitutet), LogistikCentrum AB and PLP Architecture. The project ran from June to November in 2018 and will launch a NuMo report in January 2019. For more info contact Lei Chen          (lei.chen@ri.se) at RISE Viktoria and visit the project’s website and the Cartube concept.

Svensk forskning när den är som bäst

I fotbollsvärlden pratas det den här veckan mycket om ”the Swedish way” – uthållighet, fokus, målmedvetenhet, teamarbete. Här i nyhetsbrevet tänkte vi fortsätta i samma anda och lyfta fram några svenska forskningsprojekt och resultat som oftast uppkommit tack vare just dessa egenskaper hos våra forskare. Stort tack till er alla som tipsat oss om relevant forskning och skickat in era sammanfattningar!

ESPLANADE (esplanade-project.se) är ett FFI-projekt som löper från januari 2017 till december 2019. Målet är förbättrad metodik för att visa att automatiserade fordon är säkra. Projektet fokuserar på fordon med ADS-funktioner (Automated Driving System) på nivå 4 enligt SAE-skalan (ett fordon som kan köra helt utan förarinteraktion under begränsade förutsättningar). Vi vet att sådana funktioner har ett antal karakteristiska skillnader mot traditionella fordonsfunktioner där säkerhetsbevisning sker enligt standarden ISO 26262. En ADS-funktion har full kontroll över fordonet, och en viktig del av säkerheten ligger därför i att systemet kör på ett säkert sätt, dvs tar taktiska beslut som inte försätter fordonet i farliga situationer. Därför behöver vi metoder för att säkerställa att systemet tar taktiskt säkra beslut. Andra problem som projektet arbetar med rör hur man visar att sensorernas prestanda är tillräckliga för uppgiften i varje givet ögonblick, vilka arkitekturmönster som är användbara för en ADS, hur man hanterar säkerhetsbevisning för system med icke-deterministiska algoritmer (AI, machine learning), hur man gör hazardanalys för en ADS med en mycket komplex situationsanalys, säkerhetsbevisning för förarinteraktion, och hur man visar fullständigheten i kravnedbrytning för komplexa system. Projektet koordineras av RISE och övriga deltagare är Aptiv, Comentor, KTH, Qamcom, Semcon, Systemite, Veoneer, Volvo Cars, Volvo AB och Zenuity.

Rullande busskur. Detta är ett FFI-projekt som löper från maj 2018 till oktober 2018 och som syftar till att förstå möjligheter och begränsningar ur ett tekniskt perspektiv när det gäller självkörande småbussar på landsbygden, förstå möjligheter och begränsningarna ur ett beteendeperspektiv, dvs. acceptansen av den tekniska innovationen hos resenärer och allmänheten, hitta lämpliga geografiska områden inom Skellefteå kommun där upplägget skulle kunna testas, samt få en bild av kostnaderna och nyttorna. Målet med studien är att skapa förutsättningar för en framtida ansökan för ett demonstrationsprojekt.

HARMONISE är ett FFI finansierat projekt  med målet att undersöka olika sätt att harmonisera, förenkla, hantera och förbättra hur förare interagerar med tekniska system som automatiserar delar av eller hela den dynamiska körningen i fordonet. Projektet är ett samarbete mellan Volvo AB, Volvo Cars och RISE Viktoria. Projektet kommer att utveckla och testa olika koncept, som stödjer interaktionen mellan förare och fordon på ett multimodalt sätt och utveckla designriktlinjer. Projektet utforskar problematiken när en förare tror att hon/han har mer support (nivå 4) än vad som för tillfället erbjuds.  Nya rön från distribuerad kognition och kroppslig kognition (embodied cognition) utforskas som teoretisk grund. Mer information om projektet hittas här och kontaktperson är Emma Johansson (emma.johansson@volvo.com).

Människor och interaktiva autonoma system. Sam Thellmans forskarstudier i kognitionsvetenskap vid Linköpings universitet (huvudhandledare: Tom Ziemke) undersöker hur människor förstår interaktiva autonoma system, som sociala robotar och självkörande fordon. Avhandlingens syfte är att belysa hur, när och varför människor tillskriver autonoma system intentionella tillstånd, som mål (t.ex. “bilen vill till punkt X“) och övertygelser (t.ex. “bilen har sett fotgängaren”), och hur detta påverkar människors förmåga att interagera med autonoma system. I forskningsarbetets första etapp undersöktes människors tolkningar av beteende hos människolika robotar (Thellman, Silvervarg, & Ziemke, 2017) och självkörande bilar (Petrovych, Thellman, & Ziemke, in press), det senare i samarbete med VTI/Linköping. Relevanta publikationer:

  • Petrovych, V., Thellman, S., & Ziemke, T. (in press). Human Interpretation of Goal-Directed Autonomous Car Behavior. In CogSci 2018: Changing Minds. 40th Annual Meeting of the Cognitive Science Society, Madison, VA. Cognitive Science Society.
  • Thellman, S., Silvervarg, A., & Ziemke, T. (2017). Folk-psychological interpretation of human vs. humanoid robot behavior: exploring the intentional stance toward robots. Frontiers in psychology, 8, 1962.

Optimala manövrar. Victor Fors har i sin licavhandling vid Linköpings universitet tittat på vad som händer när bilen gör en manöver nära gränsen för vad den faktiskt klarar av för att undvika att krascha. Målet på kort sikt är att få en uppfattning om hur optimala manövrar ser ut, och på längre sikt att bygga in insikterna från avhandlingen i ett säkerhetssystem för förarlösa fordon. Avhandlingen går under titel Optimal Braking Patterns and Forces in Autonomous Safety-Critical Maneuvers och ingår i det stora WASP-programmet, Wallenberg Autonomous Systems and Software Program, finansierat av Knut och Alice Wallenbergs stiftelse.  Vid frågor kontakta Victor Fors (victor.fors@liu.se).

NPAD (Network-RTK Positioning for Automated Driving) är ett projekt finansierat av Vinnova FFI som skall utforma ett system för stora volymer automatiserade fordon eller andra mobila plattformar med behov av noggrann positionering. Projektet staratade i maj och kommer pågå till april 2020. Det kommer att genomföras i flera steg där en demonstrator kommer att utformas baserat på krav från både automatiserad körning och andra mobila plattformar. Projektet skall bland annat: a) definiera kraven för positionering för automatiserad körning, b) analysera kraven på ett distributionssystem för korrektionsdata, c) utforma ett referenssystem på AstaZero för utvärdering av mätosäkerhet hos positioneringssystem och d) utföra test och validering av systemet baserat på en automatiserad fordonsapplikation från Einride. Projektpartners är: RISE, AstaZero, Ericsson, Lantmäteriet, AB Volvo, Scania, Einride, Waysure och Caliterra. Kontaktperson är Stefan Nord (stefan.nord@ri.se).

Drivers quickly trust autonomous cars. Successful introduction of autonomous cars requires autonomous technology that users experienced as trustful and useful. The aim of this study conducted by Volvo Cars within the FFI-project Human Expectations and Experiences of Autonomous Driving (HEAD) was to explore if drivers trust a fully autonomous car and if they experience that in-vehicle tasks can be conveniently carried out when in full autonomous mode. The test was conducted on a test track and an autonomous research car was used. The car was capable of handling the test track driving environment with full autonomy. When in full autonomous mode the participants got to engage in individually selected tasks, such as use media display, read, eat, drink and carry out work tasks with their own portable device. The results show that participant trust the autonomous car and they find it convenient to conduct in-vehicle tasks while in full autonomous mode. The study will be presented at the AHFE-conference this summer:

  • Broström, R., Rydström, A., Kopp, C., (in press) Drivers quickly trust autonomous cars. In the 9th International Conference on Applied Human Factors and Ergonomics, July 2018, Orlando, Florida, USA.

Customer perspectives. Intermetra Business & Market Research Group AB conduct studies mainly for the public sector in Sweden, with a focus on passenger transport. Among our most recent studies is a cross industry study on the customer perspective on Mobility as a Service in collaboration with RISE. We are now in the process of finalizing the result on a study on customer perspective on autonomous vehicles. The study has been conducted by a web survey to a representative sample of the Swedish population, with 500+ completed surveys. The study covers questions such as the Swedes knowledge and attitudes towards autonomous vehicles, as well as alternative sources of fuel. The results are expected to be available by the end of July. For more info, contact Markus Lagerqvist (markus@intermetra.se).

CoEXist is a European project (May 2017 – April 2020) which aims at preparing the transition phase during which automated and conventional vehicles will co-exist on cities’ roads. CoEXist aims at enabling mobility stakeholders to get “AV-ready” (Automated Vehicles-ready). To achieve its objective, CoEXist develops a specific framework and both microscopic and macroscopic traffic models that take the introduction of automated vehicles into account. The tools developed in the framework of CoEXist are tested by road authorities in the four project cities: Helmond (NL), Milton Keynes (UK), Gothenburg (SE) and Stuttgart (DE) in order to assess the “AV-readiness” of their local-designed use cases. Swedish partners in the CoEXist project is VTI and the City of Gothenburg. Homepage: https://www.h2020-coexist.eu/. Contact Johan Olstam (johan.olstam@vti.se) for more information.

SMART. The aim of the SMART project is to enhance and further develop todays state-of-the-art traffic models in order to enable analysis of future traffic systems. The project consists of two PhD projects, one focusing on microscopic traffic simulation and the behaviour of and interaction between conventional and automated vehicles, and one focusing on mesoscopic simulation and fleets of automated vehicles. The project is carried out by VTI, KTH and LiU and is funded by Trafikverket via Centre for Traffic Research (CTR). Contact Johan Olstam (johan.olstam@vti.se) or Wilco Burghout (wilco@kth.se) for more information.

Predicting  driver actions.The largest factor in traffic accidents today are human errors. There are many ways, in which problematic behaviors such as inattention can be mitigated. One of the tools used for this purpose is warning systems. There are situations where a warning system based on information from only one given point in time can provide an insufficient time window for the driver to react. A prediction of future events could be used in order to increase the amount of time between the warning and the dangerous event. This study explores possibilities of using recurrent neural networks with long short-term memory for prediction of eight different driver actions inside of a vehicle, such as glancing and reaching inside of the vehicle among others. These predictions, in turn, could potentially be used to improve a warning system and give a driver more time to react to a given situation. The predictions are based on sequences of actions, which are generated from sequences of images with a convolutional neural network. A dataset, consisting of sequences of images, used in the study was gathered at RISE Viktoria AB. The hyperparameters of the recurrent neural network, such as the number of hidden units and amount of layers, was chosen with Bayesian optimization. An addition of a parallel input of optical flow created from the input images was found to improve the performance of the convolutional neural network. The complete network achieved an average prediction accuracy of 87% for the next frame predictions and 67% after 20 frames. A comparison where the predictions were set to the last element in the input achieved an accuracy of 80% for one frame ahead and 50% after 20 frames. The study is part of Martin Torstensson’s masters’ thesis that was conducted as a part of the research projects DRAMA– Driver and passenger activity mapping (funded by FFI) and AIR– Action Intention Recognition (funded by KK-stiftelsen):

  • Torstensson, M., (in press) Prediction of Driver Actions With Long Short-Term Memory Recurrent Neural Networks. Master Thesis. Chalmers University of Technology, 2018.

Predicting pedestrian behavior. Behavior of pedestrians who are moving or standing still sufficiently close to the street could be one of the most significant indicators about pedestrian’s instant future actions. Being able to recognize the activity of a pedestrian, can reveal significant information about pedestrian’s crossing intentions. Thus, the scope of this study is to investigate ways and methods in order to understand pedestrian´s activity and in particular their motion and head orientation to the traffic. Furthermore, different featuresand methods were examined, used and assessed according to their contribution on distinguishing between different actions. Those were Histogram of Oriented Gradients (HOG), Local Binary Patterns (LBP), Bag of Words and CNNs. All the aforementioned features (HOG, LBP…etc) were extracted by processing still images of pedestrians. In this project, still images extracted from video frames depicting pedestrians walking next to the road or crossing the road are used. The study focuses in three parts, one is to derive the pedestrians action regarding if they are walking or not. The second is to identify the pedestrian´s head orientation in terms of if he/she is looking at the vehicle or not. The final task is to combine these two measures in a classifier that is trained to predict the pedestrian´s crossing intention and action. In addition to the pedestrian’s behavior for estimating the crossing intention, additional features about the local environment were added as input signals for the classifier, for instance, information about the presence of zebra markings in the street, the location of the scene, the weather conditions etc.  Moreover, several Machine Learning techniques were used after extracting the features (HOG, LBP etc…)   both for understanding the behavior of the pedestrian and for predicting the final action. Those were Support Vector Machines, k-nearest neighbor, Decision Trees. The data used in this thesis come from the Joint Attention for Autonomous Driving (JAAD) dataset. This study is done as a part of Dimitris Varytimidis (dimvar16@student.hh.se) masters’ thesis within the research project AIR– Action Intention Recognition (funded by KK-stiftelsen):

  • Varytimidis, D., (in press). Detection and intention prediction of pedestrians in zebra crossing. Master thesis. Halmstad University, 2018.

PRoPART (www.propart-project.eu) is a H2020 project (December 2017-November 2019), funded by the European Global Navigation SatelliteSystem Agency (GSA), focusing on positioning of automated vehicles and advanced driver assistance systems. The main purpose of the project is to develop and enhance an RTK (Real Time Kinematic) software solution by both exploiting the distinguished features of Galileo signals as well as combining it with other positioning and sensor technologies. RTK gives the possibility of cm-level accuracy using correction data from reference stations. The PRoPART partners are RISE, AstaZero, Scania, Waysure, Fraunhofer IIS, Ceit-IK4, Baselabs and Commsignia. Contact person is Stefan Nord (stefan.nord@ri.se).

Sweden4Platooning

Scania, AB Volvo, Research Institutes of Sweden (RISE), Kungliga Tekniska Högskolan, (KTH), Schenker AB och Trafikverket arbetar i ett forskningsprojekt om kolonnkörning på allmänna vägar med fordon från olika tillverkare [1, 2].

Projektet väntas bland annat generera en standardiserad platooningapplikation för olika lastbilsmärken, öka kunskap om behov och ekonomiska värden för olika platooningrelaterade tjänster samt bygga kunskap om relevanta affärsmodeller. En pilotstudie med kooperativ adaptiv farthållare (CACC) med endast longitudinell styrning är också planerad att utföras. Utöver det kommer projektet att generera en licentiatavhandling och en doktorsavhandling.

Projektet startade i januari 2017 och kommer att pågå till december 2019. Det delfinansieras av Fordonsstrategisk Forsning och Innovation (FFI).

Källor

[1] Volkswagen News. Scania takes part in multi-brand platooning project. 2017-10-19 Länk

[2] VINNOVA. Sweden 4 Platooning. Länk

Senaste nytt och lästips

  • Skutt, skutt. Att identifiera och avståndsbestämma hoppande kängurur är svårt för Volvo Cars. Länk
  • Waymo lär sina bilar hur de ska interagera med utryckningsfordon. Länk
  • Polisen i Dubai ska testa självkörande övervakningsbilar utvecklade av Atsao Singapore Limited. Länk
  • Från 2019 kommer Volkswagen att införa pWLAN som standard på vissa modeller. Länk
  • Ett amerikanskt företag föreslår Hyperlane, ett körfält för automatiserade fordon. Länk
  • Toyotas nya Lexus LS som nyligenvisades i Japan kommer med en rad förarstödsfunktioner. Länk
  • Ford skapar ett nytt team som ska fokusera på forskning och utveckling inom robotik och artificiell intelligens. Länk
  • Nissans vision är inte att ersätta föraren, utan att förbättra förarens upplevelse med hjälp av automation. Länk
  • Trimbles dotterbolag Applanix i samarbete med universitet i Kanada kring positioneringssystem för automatiserade fordon. Länk
  • Intel-företaget Wind River och BlackBerry QNX är på frammarsch i Ottawa. Länk
  • MIT utvecklar drönare som kan både köra och flyga. Länk
  • MIT har också tagit fram en självkörande rullstol. Länk
  • Ertrac har släppt en ny version av Automated Driving Roadmap. Länk
  • TechEmergence beskriver vad som är på gång på den tunga sidan. Länk
  • KTH och VTI har tagit fram framtida scenarier för automatiserade fordon i Sverige. Länk
  • Nyfiken på hur automatiserade fordon kan hjälpa människor med funktionshinder? Den problematiken diskuteras i ett White Paper från Ruderman Foundation. Länk
  • Automatiserade fordon måste vara kooperativa. Länk
  • Jordbruken kommer aldrig bli som förr. Länk

Autonoma bussar snart en verklighet

I Ericssons senaste ’Mobility Report’ beskrivs att det snart kan bli vanligt att se autonoma bussar på vägarna [1]. Ett viktigt steg  för att införa autonoma bussar i kollektivtrafiken är dock utvecklingen av fjärrövervakning och kontrollsystem som säkerställer säkerheten.

Rapporten beskriver att Scania har ett 5G-konceptnätverk som nu används för olika tester där en fjärroperatör kör en buss runt ett testområde, som till och från en parkeringsplats. Testerna fokuserar på två områden: responstiden för fjärrövervakning och kontrollsystemet, och de automatiska verktygen som krävs för att prioritera nätverkstjänsterna. Sensordata från bussen, inklusive videouppspelning med högupplösning, strömmas till fjärroperationscentralen över LTE-radio i ett 5G-nätverk. Testbädden inkluderar också en automatiserad servicebeställning, vilket möjliggör att man kan prioritera vilka nätverksresurser som behövs för fjärrövervakning och drift.

Parallellt med Scanias verksamhet demonstrerades också fjärrstyrningen av ett forskningskonceptfordon (RCV) – utvecklat och anpassat av Integrated Transport Research Lab vid KTH Royal Institute of Technology – på Mobile World Congress 2017.

Källa

[1] Remote operation of vehicles with 5G, Ericsson.com, 2017 Länk

Fordonsdynamik för automatiserad körning

Onsdag 31 maj arrangerade svenska fordonsingenjörsföreningen, SVEA, ihop med SAFER och kompetenscentret ECO2 årets seminarium, denna gång med temat fordonsdynamik för automatiserad körning [1]. Här kommer ett kort referat från seminariet.

Malte Rothämel från Scania pratade om behovet av redundans i chassisystemen när föraren inte längre finns redo att ta över, och visade exempel från tunga fordon med en aktiv styrnings-aktivator med dubbla elmotorer, och en bromsaktivator placerad direkt vid bromspedalen – bromssystemet är i övrigt redan redundant.

Per Ola Fuxin och Matthijs Klomp från Volvo Cars föredrog Volvos utveckling avseende förarstödssystem, från tidiga ABS-funktioner via många TBF (TreBokstavsFörkortningar) till dagens Pilot Assist. Målet är att skapa en ”sömlös” körupplevelse, där alla funktioner samspelar optimalt. Pilot Assist är i princip en vidareutveckling från adaptiv farthållare, ACC, där bilen också kan hålla sig i filen i farter upp till 130 km/h – men fortfarande är föraren ansvarig och måste hålla minst en hand på ratten (utom vid kökörning i lågfart). Detta eftersom systemet (ännu) inte kan identifiera alla objekt. Noterbart också att Volvos hybridbilar har ”by-wire”-bromsar och att alla deras framtida bilar också kommer att ha det.

Fredrik Bruzelius från VTI gjorde en översikt av resultaten från Wanna Svedbergs utredning av rättsliga principer med automatiserade fordon som vi skrivit om tidigare. Det är då viktigt att skilja på civilrätt och brottmål. I civilrätt, där man alltså ”stämmer” någon, kan ansvaret ligga på en juridisk person, till exempel en fordonstillverkare. Men i brottmål, där alltså ett brott mot trafiklagstiftningen skett, måste det (i Sverige) vara en fysisk person som är ansvarig. Detta ställer förstås till det för helt självkörande bilar (SAE-nivå 4 och 5). Ett förslag är att skapa en ”kontrollcentral” med operatörer som ger godkännande för start av varje enskild automatiserad körning (se t.ex. GMs gamla reklamfilm).

Peter Nilsson från Volvo GTT och Chalmers redogjorde för sitt projekt där man studerat principerna för hur man ska reglera långa fordonskombinationer vid körning i multipla filer. Långa fordon har ofta problem att byta fil i tät trafik och kan då tvingas till att ”bryta sig in” i nästa fil. Denna situation måste även framtida automatiserade långa lastbilar kunna hantera.

Jim Crawley från Haldex Brakes gjorde en djupdykning i ABS-reglering och visade hur deras nya snabba reglerventil kan både ge kortare bromssträckor men också spara energi och med separata enheter kan ge redundant reglering av avancerade funktioner för t.ex. automatiserade fordon.

Niklas Lundin från Asta Zero berättade om utmaningarna med testning både av aktiva säkerhetsssystem med alla varianter, och automatiserade fordon. De senare innebär en betydligt komplexare testning med tusentals testfall där det i praktiken är omöjligt att testa alla. Grundprincipen är då att genomföra huvuddelen av testerna med modeller som valideras med tester. Niklas nämnde också ett tänkbart cyberhot: om någon planterar falsk kartinformation så kan fordonen svänga av vägen för att de tror att det finns en anslutande väg där. Även sådana situationer måste man kunna säkra med testningen.

Slutligen berättade Lars Drugge från KTH om ITRLs plattformar, RCV och RCV-E1/-E2, som kontinuerligt utvecklas nu även med LIDAR, radar och kamera föru atomatiserad körning.

Totalt sett en givande dag som gick lite mer på djupet än många andra seminarier. (Dessutom tack till Mattias Lidberg som visade vad alla fordonsingenjörer med självaktning alltid måste bära med sig!)

Källor

[1] SVEA FORDON: Seminarie Vehicle Dynamics for Automated Driving Länk