Etikettarkiv: Högskolan i Halmstad

Guldkorn från svensk forskning

Dessa guldkorn är bidrag från våra läsare – stort tack för det, och för all fantastisk forskning och utveckling som ni gör. Keep up the good work!

iQ-Pilot & iQ-Mobility. These are two recently finished projects co-funded by the Strategic vehicle research and innovation programme (FFI). The focus of the projects was development of new technology to realize flexible, energy-efficient transport solutions in cities. Several proof-of-concept prototypes have been developed and demonstrated, including autonomous buses and a smart coordination system for bus fleets. The research results were presented in a webinar earlier this week. These results are the joint efforts of Scania, Ericsson, INIT, Veoneer, Royal Institute of Technology (KTH) and Örebro University. 

Human interaction with autonomous minibuses. Tom Ziemke’s research group at Linköping University, in collaboration with researchers at VTI, will during the autumn start a new research project on people’s interaction with autonomous minibuses on campus. The research will focus on method development and empirical studies of how pedestrians, bicyclists and car drivers interact with the buses. A two-year postdoc position is available via this link (application deadline: August 5). For more information contact Tom Ziemke (

GLAD – Goods delivery under the Last mile with Autonomous Driving vehicles. Small autonomous electric delivery vehicles (ADV) are expected to transform transportation of goods under the first and last mile. The advantages are increased transportation and energy effectiveness, but it is also important that these vehicles are safe and accepted in society. The aim of the GLAD project is to develop an initial knowledge base on efficiency, safety and human experience of ADVs for the first and last mile delivery of goods in Sweden, and on how to create a balance between these three aspects from a socio-technical perspective. To achieve this, the project will utilize Zbee vehicles that will be adapted in terms of vehicle design and autonomous vehicle behaviour, human-machine interface, teleoperation and vehicle management. The overall goal is to develop knowledge that accelerate introduction of new efficient goods delivery in our society and contributes to meeting the goals of Agenda 2030. This will be assured also by connecting a licentiate candidate to the project. The project is co-funded by Trafikverket and involves RISE, Halmstad University, Aptiv, Combitech and Clean Motion. It started in June 2020 and will run for ca 2 years. For more information contact

Tactical Decision-Making in Autonomous Driving by Reinforcement Learning with Uncertainty Estimation. Reinforcement learning (RL) can be used to create a tactical decision-making agent for autonomous driving. However, previous approaches only output decisions and do not provide information about the agent’s confidence in the recommended actions. This paper investigates how a Bayesian RL technique, based on an ensemble of neural networks with additional randomized prior functions (RPF), can be used to estimate the uncertainty of decisions in autonomous driving. A method for classifying whether or not an action should be considered safe is also introduced. The performance of the ensemble RPF method is evaluated by training an agent on a highway driving scenario. It is shown that the trained agent can estimate the uncertainty of its decisions and indicate an unacceptable level when the agent faces a situation that is far from the training distribution. Furthermore, within the training distribution, the ensemble RPF agent outperforms a standard Deep Q-Network agent. In this study, the estimated uncertainty is used to choose safe actions in unknown situations. However, the uncertainty information could also be used to identify situations that should be added to the training process. The paper will be presented at the Intelligent Vehicles Symposium (IV) in October 2020, and a preprint is available on arXiv. The code that was used is also available on GitHub For more information, contact Carl-Johan Hoel ( at Volvo Autonomous solutions. This work was partially supported by the Wallenberg Artificial Intelligence, Autonomous Systems and Software Program (WASP), funded by Knut and Alice Wallenberg Foundation, and partially by Vinnova FFI.

Autonomous Mapping of Unknown Environments Using a UAV. As part of the research conducted within the project LASH-Fire (Eu-Horizon 2020, No.814975), RISE supervised the work of Chalmers students developing an automatic object search for indoor environments using a flying drone. At the core of this system a reinforcement learning (RL) algorithm was implemented for the drone to navigate, detect obstacles, recognize objects and explore the environment. This machine learning (ML) project marks a starting point for further development towards an autonomous identification and surveillance solution in a wide range of study cases where cargo ships, like the ones studied in LASH-Fire, are an ideal target application. A modularized approach was used targeting research areas such as obstacle avoidance, object detection & recognition, simultaneous localization and mapping, etc. The exploration module was specially challenging and will require further work but the project in general was successful in providing a methodology and tools when using flying drones for indoor environments. The Master’s thesis was conducted by Erik Persson and Filip Heikkilä, and is available via this link. For more information contact

Projektet ESPLANADE, som började 2017 och avslutades sista mars 2020, handlade om hur man visar att ett automatiserat fordon är säkert. Det finns flera problem som måste hanteras för att man ska kunna göra en komplett säkerhetsargumentation. Projektets resultat inkluderar därför nya metoder för säkerhetsargumentation för en ADS, några av dessa är: 

  • En process för säkerhetsanalys samt designprinciper för interaktionen när en människa överlämnar kontrollen över ett fordon till en ADS eller tvärtom. Processen innehåller existerande metoder som sekvensdiagram, orsak-konsekvensanalys och felträd, men applicerade på människa-maskininteraktion istället för enbart tekniska system
  •  Hur man definierar den operativa designdomänen (ODD) för en ADS utgående från önskade användningsfall, vilket innebär en definition av parametrar inom vilka en ADS-funktion är avsedd att fungera, samt strategier för att säkerställa att fordonet håller sig inom sin ODD.
  • En metod (kallad QRN) för riskanalys och framtagande av säkerhetsmål. Till skillnad från vanliga riskanalysmetoder bygger den inte på analys av specifika situationer utan på definition av acceptabel frekvens av incidenter med olika allvarlig konsekvens, och en mappning av incidenter till olika klasser av konsekvenser. Säkerhetsmålen uttrycks så att man säkert hamnar inom acceptabla frekvenser.
  • Ett ramverk för formell och systematisk hantering av säkerhetskrav med en kombination av åtgärder under utveckling och under drift, bland annat baserat på modeller av osäkerhet.
  • Användning av metoden funktionsanalys för att distribuera beslutsfattande på en ADS-arkitektur samt framtagande av säkerhetskrav.
  • Säkerhetskontrakt och komponentbaserad design för att underlätta kompletthetsbevisning i kravnedbrytning, möjliggöra kontinuerlig produktuppdatering, samt kunna uttrycka säkerhetskrav för sensorsystem som inkluderar kamera, radar mm.

En publik rapport och länkar till de flesta av projektets publikationer finns på projekthemsidan.

Prepare Ships Project. Running for 26 months, the H2020 project “Prepare Ships”, funded by the European Global Navigation Satellite System Agency (GSA), was successfully started in December 2019. The 5 consortium partners, coming from 3 European countries have developed a machine learning based future position prediction for ships in order to avoid ship collisions and close quarter situations as well as reducing environmental impact by more advanced decision making. In a RTK (Real Time Kinematic) software solution, it will both exploiting the distinguished features of Galileo signals as well as combining it with other positioning and sensor technologies. It will use the next generation maritime communication techniques VDES and the new suit of IALA Standards (S100) on sea charts. The innovation developed during the project can make more autonomy of navigation feasible by exchanging future positions and allow eased decision making on ships, suitable to become an international game changer for the future of autonomous shipping. The demonstration and testing will be done onboard three different vessels in the Gothenburg archipelago. The project is coordinated by RISE with partners from across Europe, including SAAB, Lantmäteriet, Telko and Anavs. For more information check out our homepage, join our linkedin group or contact Johannes Hüffmeier at RISE (  

How do you ensure safety of autonomous shipping? Today’s risk assessment methods, application of methods and models used in shipping are usually based on humans being directly in charge of ships, VTS, port controls, etc. and may not be sufficient to reflect and evaluate the complexities and inherent risks of introducing further automation and digitalization in the shipping domain. The introduction of smart ships will create traffic situations between manned and unmanned ships where on one hand decisions and actions are based on algorithms and on the other hand by a human operator where a large part of the decision making. Increasing the level of automation implies that the goal-based standards for shipping need to be based on a risk assessment that reflects the expected roadmaps towards more smart ships and so far, research on autonomous transportation has focused on other parts than the effect of introducing and mixing different levels of automation and only very basic standards have been proposed by classification societies, where DNVs standards [DNV, 2018] have two pages in the appendix on basic set-ups for testing and validation. The main objective of the RFAF project financed by Trafikverket is to analyse how autonomous navigation can be proven to be safe. The aim of the project is to perform a simulator-based risk identification for autonomous shipping traffic. Increasing the level of automation implies that the goal-based standards for shipping need to be based on a risk assessment that reflects the expected roadmaps towards autonomy. Based on two use cases, the routes Fredrikshamn-Göteborg and crossing of the Ljusterö fairway, relevant risks are identified based on ship simulations performed by mariners describing especially nautical challenges for more autonomous shipping resulting in a common risk model. The project lasts from January 2020-December 2022. There are 3 project partners with RISE as coordinator. For more information visit the project website or contact Johannes Hüffmeier (

The SWEA-financed (Energimyndigheten) Data-driven Optimised Energy Efficiency of Ships is a national project involving 7 ship owners, 3 companies from the supply chain and RISE, lasting for 16 months. The data analysis of energy consumption is often complex and there are different driving forces for decisions. However, increased data collection can be unprofitable if you do not have methods to analyze the complex systems. Developments within machine learning provides new opportunities to develop both technically and economically powerful tools energy efficiency. Even today, to some extent, economic driving is applied, for example. eco-driving, however, the effect is in many cases limited as decision-making is more complex than the operator / navigator can see. Also, not always available incentives and motivation of individuals to reduce energy use. However, data collection is increasing both quality review and analysis are not performed to the same extent. Using the results of the project’s data collection and analysis, recommendations can be given about which tools which can be developed in a next step, such as: a) nudging, decision support system or autopilot for ECO driving, b) route optimization based on the ship’s accelerations and motions, and c) decision support based on statistics or real-time analysis of data to identify optimal operation (parameters such as sea state, current, speed, load condition, etc.). The objectives of the project are to: a) Achieve reduced energy use on the project’s vessels by 10–35% both at quay and in sea operations, b) Demonstrate potential with machine learning of operational data, and c) Demonstrate the possibility that better operational data may form the basis for the development of generic energy efficiency tools for smaller vessels in commercial traffic. For any details on the project, reach out to Johannes Hüffmeier (

Photonics Private Public Partnership Roadmaps for EU’s next Framework Program Horizon EuropéThe area of photonics for automotive applications is a significant area which includes not only photonics sensors for the EU defined topic Mobility and Safety for automated Road Transport. Photonics also plays a role in the path towards the targets of Zero Emission Road Transport, Clean Energy Transition, and the Industrial Battery Value Chain. The work of defining the Strategic Research Agenda (SRA) in the specific area of Photonics with EU industrial partners, universities and research centers is performed through the EU technology platform ”Photonics21”, which is funded by the EU commission. The current roadmap for Photonics was published in the document: “Europe’s age of light! How photonics will power growth and innovation, Strategic Roadmap 2021–2027” The section on Automotive and Transport can be found in section 3.9. The coordinator of the whole Photonics 21 is done by VDI Technologiezentrum GmbH in Düsseldorf, Link. We believe this is important as there are a lot of EU research money at stake. The current recommendation by the European Parliament for the whole Horizon Europe budget 2021 -2017 is €120 Billion. The research funding will be divided among many topics where Climate, Energy, and Mobility is one of the clusters. There is a large Swedish interest in the cluster and cooperation with industry is one important factor in the program. Most, if not all, of the European automotive industry are usually involved in at least selected programs.

Now, based on feedback from the new European Commission, the board of Photonic21 have decided to reshape the roadmap and as a consequence automotive & transport will henceforth be combined with the topics of climate and energy. Besides merging the different topics in one document, this gives us an opportunity to revise the previous document into something that we believe should support our industry even better, considering that the current document was prepared in 2018 and the present situation the industry is facing. We want to ensure that the guiding document capture the specific needs of the automotive industry. The aim of the work is to define the research topics of the Strategic Research Agenda (SRA) which will define the upcoming calls in the Horizon Europe program. 

We now invite comments on the current chapter and roadmap (provided in the link above). Determined by EU commission schedules this work has to be completed on 4 September, why we need your input no later than 24 August 2020. We ask for specific text suggestions and specific roadmap suggestions (compare with p. 140 in the above mentioned Strategic Roadmap). Please forward your suggestions to Jan-Erik Källhammer at He acted as chair of the group Automotive and Transport in the current roadmap and now act as co-chair of the new group Climate, Energy, and Mobility together with Dr. Heinz Seyringer of V-Research GmbH in Austria. 

Design för välmående

Förra veckan var Högskolan i Halmstad värd för seminariet What’s the fun in parking? – Wellbeing, Interaction Design and Cars med Marc Hassenzahl, som är professor inom Ubiquitous Design / Experience and Interaction vid Universiteit of Siegen. Presentationen sammanfattades i följande fem punkter [1]:

  • All teknologi formar oundvikligen vårt välmående genom försedd funktionalitet och interaktion.
  • Välmående (eng. wellbeing) bör vara startpunkt för all design. Vi behöver mer ”value-fiction” och mindre ”science-fiction”, alltså mer social innovation och mindre rent tekniskt baserad innovation.
  • Utmaningen att designa för välmående är att identifiera, förstå, omformulera eller uppfinna positivt vardagligt handlande, och materialisera detta genom interaktion och form; ”Towards a humanistic approach to technology design”.
  • Designers behöver vara medvetna om normativa påföljder och det ansvar de har för att forma människors välmående.
  • Vi behöver hitta svar på hur vi bäst designar för ”otherware” (dvs. teknik med interaktiva AI-komponenter).

Egen kommentar

Prof. Hassenzahl lyckas bra med att exemplifiera teori om upplevelsedesign och välmående med konkreta exempel. Han betonar vikten att (produkt)utveckling bör följa en viss ordning, enligt aspekterna: 1) Varför (upplevelse/behov), 2) Vad (aktivitet) och 3) Hur (interaktion). De som är med och utvecklar produkter och tjänster (och styr dessa aspekter) har stora möjligheter och likaså ansvar vad gäller utfallet, även om det sedan är mer situationsspecifika aspekter (t.ex. vem/var/när) som formar upplevelser i stunden.

Det ges härmed en tydlig rekommendation att ta del av seminariet i sin helhet. Jag kan också tipsa om två andra ”Zoom-inars” (i härligt amerikanskt debattformat) med teman The driverless new normal och The future of public roadway transit [2].  


[1] Halmstad Högskola Colloquium. 2020-05-24 Länk

[2] Fishkin, F. Pyle, K. Bino, M. Jeremiah, L.  Zoom-Tank. 2020. Länk

Drive Sweden Forum 2019

I går 12 september gick årets Drive Sweden Forum av stapeln med ca 270 deltagare. Drive Sweden är ju ett av 17 strategiska innovationsprogram (SIP) som finansieras av Vinnova, FORMAS och Energimyndigheten. Lindholmen Science Park är värdorganisation med Sofie Vennersten som programledare och Jan Hellåker som ordförande och har mer än 120 partners från 13 länder – 4 nya medlemmar presenterades på konferensen. Programmet blir alltmer internationellt, med samverkan såväl i EU- finansiering som gemensamma projekt. Man har också nu en person i Silicon Valley och har samarbete med Singapore.

Drive Sweden finansierar lite mer banbrytande projekt inom hållbar mobilitet, som exempelvis KOMPIS, LIMA och KRABAT. Man ger också ut nyhetsbrevet Smart Mobility samt har ett antal andra aktiviteter. Man gör nu ett omtag och lanserar en ny struktur, med delarna Society Planning, Digital Infrastructure, Policy Development, Business Models och Public Engagement, med fokus på såväl person- som godstransporter. Man har nu en öppen utlysning Innovationer för ett digitaliserat och automatiserat transportsystem för människor och gods som stänger 5 november.

Här korta sammanfattningar från några av konferensens föredrag.

David Green från Lynk & Co pratade om företagets vision att förändra mobilitet med hjälp av digitalisering för att ge en bättre kundupplevelse. För detta krävs samverkan med externa parter och man har skapat en öppen samverkansplattform

Ulrik Janusson och Marie Bemler från Scania visade några framtida möjliga scenarios för digitalisering inom godstransporter. Två viktiga parametrar är öppenhet i delning av data och hur mycket klimatfrågan slår igenom.

Hur kan man samverka med allmänheten när man designar framtida mobilitetstjänster och därmed nå en bättre acceptans för till exempel självkörande fordon? Detta har Vaike Fors från Högskolan i Halmstad studerat. En lärdom är att man måste gå bortom att bara titta se ”användare” och ”stadsinvånare” till att se alla som människor med olika behov, kunskaper och värderingar.

Våra kollegor Kent Eric Lång och Håkan Burden från RISE Viktoria berättade om policy-labbprojektet PLATT som tittar på möjliga strategier för att underlätta för självkörande fordon även från nya aktörer. En viktig strategi är att kunna bygga förtroende, trust, istället för tidigare typgodkännande-rutiner. Projektet är snart slut och man söker nu nya initiativ runt policy-utveckling.

Samtidigt måste samhället kunna hantera både att skapa goda näringslivsförutsättningar för ny teknologi och också bibehålla och förbättra säkerheten i trafikmiljön och därmed bygga förtroende, vilket Anna Fridén från KOMET, Kommittén för teknologiskt innovation och etik som den svenska regeringen tillsatt, berättade om.

Stefan Myhrberg från Ericsson talade om digital infrastruktur för automatiserade fordon, där man bland annat etablerat Drive Sweden Innovation Cloud, där Drive Sweden-medlemmar kan lagra och dela data från fordon, infrastruktur, parkeringsplatser, kameror etc. 5G är då en möjliggörare för att tillräckligt snabbt hantera de stora datamängderna som krävs när många enheter blir uppkopplade.

Olof Johansson från Trafikverket visade en ny färdplan för ett uppkopplat och automatiserat vägsystem. Färdplanen har identifierat 20 åtgärder i 4 kluster: Ökad kunskap om automatiseringens effekter (t.ex. tester och demonstrationer), Effektivt utnyttjande av kapacitet (t.ex. MaaS), Hållbart och säkert transportsystem genom digitalisering (t.ex. miljözoner) och Nya planeringsstöd för ökad användbarhet (t.ex. simuleringsmodeller). Nästa steg är att implementera åtgärderna. Suzanne Andersson från Trafikkontoret i Göteborg pratade om några utmaningar som då uppstår för samhällsplanerarna, som att städer utvecklas långsamt och man måste ta hänsyn till kommungränser.

En svårighet är att hitta och välja rätt affärsmodell för nya mobilitetslösningar. Rami Darwish från KTH berättade om ett affärsmodell-labb som man jobbar med inom ITRL ihop med Sustainable Innovation. I en paneldiskussion med Li Höglund från SnappCar, Stina Wärn från Folksam, Ulf Hammarberg från DHL och Mikael Rönnholm från CEVT, ledd av Roland Elander från Sustainable innovation, diskuterades detta. En nyckel är att lyssna till användarna och att vara beredd att göra snabba ändringar. Data från fordon och tjänster är också viktiga informationskällor. Men informationen måste då skyddas från intrång. Även regelverken måste kunna anpassas snabbt, med elsparkcyklar som ett aktuellt exempel. E-handel är ett annat område där affärsmodellerna behöver anpassas att bli både mer hållbara men ändå lönsamma. För industrin behöver affärsmodeller och leverantörskedjor också bli mer öppna att inkludera även lösningar från små entreprenörsföretag. Utvecklingen går både fortare och långsammare, beroende på område, än vad många tror. Man måste alltså jobba både kort- och långsiktigt.

Martin Svensson från AI Innovation of Sweden pratade om AI i det framtida transportsystemet, på komponent-, system- och samhällsnivå. Det finns stora möjligheter men mycket återstår att göra. Mats Nordlund från Zenuityvisade exempel på hur de använder AI och maskininlärning i sin verksamhet.

Joakim Jonsson från Volvo Bussar berättade om arbetet med autonoma stadsbussar som är kopplat till KRABAT-projektet. Man kan inte börja med att köra helt autonomt utan har identifierat 3 möjliga användningsfall: hållplatskörning, busståg och rangering i bussdepå. Se filmen nedan.

Svensk forskning imponerar

Som utlovat så kommer här en sammanställning av relevant svensk forskning. Den är långtifrån heltäckande, dock inte mindre imponerande för det. Den visar på både bredd och djup samt det unika samarbetet som vi har mellan olika aktörer. Stort tack för alla bidrag! // As promised before, here comes a summary of relevant Swedish research. It is far from comprehensive, yet very impressive. It shows both depth and width, and the unique collaborative environment that we have in Sweden. Thanks to all contributors!

Sound design for self-driving cars. The recently started FFI project Sound Interaction in Intelligent Cars explores the role of sound in enhancing user experience during unsupervised autonomous driving. The work focuses on a set of design challenges that could have important effects on people’s willingness to use and buy self-driving cars, including lack of trust in the new technology and increased risk of motion sickness. For instance, the project examines the potential for sound to subtly inform users about upcoming vehicle maneuvers before they actually take place, allowing the users to better anticipate the vehicle’s imminent behavior. In addition to addressing established challenges, the project identifies and examines completely new ways to use sound and meet users’ needs in an environment where they no longer have responsibility as drivers. The work is a collaboration among Volvo Cars, RISE, and the audio production company Pole Position Production and will result in prototypes of complete sound design solutions for self-driving cars. The solutions will be evaluated with users in a VR setting as well as in a real demo car during 2020. For more information contact Fredrik Hagman at Volvo Cars ( 

Adapting new city districts for autonomous vehicles. Halmstad University, together with ten other organisations in seven different countries, has received EU funding for a new research project for the development of smart cities. The project aims to facilitate the planning and development of new city districts so that they are adapted for electric autonomous vehicles. The project is called SUV (Stimulating the Up-take of Shared and Electric Autonomous Vehicles by Local Authorities) and brings together universities, transport organisations and municipalities for a sustainable development of urban environments. Halmstad University will in the project contribute with technologies for connected and collaborative autonomous vehicles. One example of such technology is the communication between vehicles, as well as between vehicles and the infrastructure. The University will also contribute with technical competence in modelling different scenarios with autonomous vehicles. Examples of these scenarios are the traffic flow in cities and how to connect autonomous driving in different environments, such as between a restricted harbour area and the public road network. Varberg municipality is also a project partner. For more information contact Magnus Jonsson ( at Halmstad University.

System-av-system för effektiv hantering av nödsituationer. HIEM (Holistisk och integrerad nödsituation hantering med hjälp av avancerad teknik och utrustning vid trafikolyckor) är ett Vinnovafinansierat bilateralt projekt med Kina, och SoSER (System av system för effektiva räddningsinsatser och mobilitet i städer) är ett Vinnovafinansierat projekt inom system-av-system för urban mobilitet (SoSSUM). Båda dessa projekt handlar om effektiv hantering av nödsituationer men med olika fokus. I HIEM avser vi utveckla avancerad teknik för hantering av nödsituationer som inkluderar prehospital diagnostik, sjukhusval, navigering av utryckningsfordon, smart infrastrukturanpassning, kontroll av trafikflöden och hantering av trafikstockningar, trådlöskommunikation och systemintegration. I SoSEER fokuserar vi på system-av-system (SoS) och utvecklar SoS metoder för räddningsinsatser, inklusive arkitektur, modellering, simulering och integration.  Tillsammans kommer projekten att leverera ett effektivt system-av-system för räddningsinsatser som förbättrar mobilitet i städer vid trafikolyckor, och bidra till utveckling av framstående kunskapsbas i Sverige och utbildning av specialister inom området system-av-system. Både HEIM och SOSEER involverar fyra forskningsinstanser (Chalmers tekniska högskola: trafikflödesstyrning; RISE: systemintegration; Uppsala universitet: optimal ruttval; och VTI: trafiksäkerhet och nödhantering) och fyra industriaktörer (Medfield Diagnostics AB: utrustning för snabb prehospital diagnostik; H&E Solutions: fordonsutrustning för trådlöskommunikation; WSP AB: Intelligent infrastruktur och tjänsteleverantör; FellowBot AB: platsplanering för nödfordon). Det kinesiska forskarteamet leds av Changjiang Professor Wei Wang som är en av de mest inflytelserika transportforskarna i Kina med över 30 års erfarenhet inom nödhantering. Projekten kommer att pågå i tre år från 2019-04 till 2022-04 och välkomnar intressenter inom räddning och sjukvård att ta kontakt med konsortiet för diskussion och utveckling. För mer information kontakta Xiaobo Qu ( på Chalmers eller Lei Chen ( på RISE.

Hur upplevs olika körstilar? I slutet av FFI-projektet HaTric (Användargränssnitt för automatiserade fordon) genomförde Design & Human Factors försök på AstaZero med Wizard-of-Oz-bil från Volvo Cars. En Wizard-of-Oz-bil är gjord för att upplevas som helt självkörande, men framförs i verkligheten av en dold testförare i baksätet. Under försöket fick deltagarna uppleva två olika körstilar med fordonet som körde en bana med ett antal vanliga trafiksituationer. Fordonet körde ett varv med en mer offensiv stil och ett varv med en mer defensiv stil. Deltagarna fick skatta tillit i de olika situationerna och de intervjuades om sin uppfattning om hur fordonet uppförde sig och fungerade. Nu har vi analyserat klart resultaten från studien och några intressanta slutsatser är att människors tillit till fordonet påverkas mycket av situationerna, t.ex. om det finns oskyddade trafikanter med i situationen. Det var inte en körstil som upplevdes som mest tillitsskapande i alla situationer, men på det stora hela föredrog deltagarna den mer defensiva stilen. När det gällde deltagarnas förståelse och mentala bild av fordonet så byggde deltagarna tydligt upp en omfattande bild av hur fordonet fungerade och tänkte på baserat den väldigt begränsade input de fick. De tolkade in tekniska funktioner och komponenter, egenskaper, förmågor och till och med personlighet baserat på fordonets körning i de olika situationerna. För mer resultat, håll utkik efter kommande publikationer i Transportation Research Part F och licentiatsseminarier under hösten. Kontaktperson är Lars-Ola Bilgård ( på Chalmers. 

NPAD (Nätverks-RTK Positionering för Automatiserad Körning) är ett FFI-projekt som löper från maj 2018 till april 2020.Projektets mål är att möjliggöra Nätverks-RTK GNSS-positionering för ett stort antal mobila plattformar genom att tillämpa den standard som utvecklats av 3GPP samt anpassa Lantmäteriets befintliga infrastruktur (SWEPOS). Nätverks-RTK är en GNSS-teknologi som har potential att kunna svara mot krav på kostnad, noggrannhet och tillgänglighet. Denna teknologi bygger på att korrektionsdata från en fast referensstation kan tas emot av GNSS-mottagaren. Dagens distribution av korrektionsdata är inte byggt för en massmarknad av t.ex. automatiserade fordon eller smartphones. 3GPP arbetar nu med standardisering kring hur korrektionsdata skulle kunna distribueras via mobilnätet vilket skulle kunna möjliggöra positionering på cm-nivå för en massmarknad.  Projektet syftar till att sammanställa kravbilden utifrån automatiserade fordon, undersöka hur befintliga system för distribution av korrektionsdata skall anpassas och hur en komplett arkitektur skall se ut för distribution via mobilnätet. En demonstrator skall tas fram för att utföra tester och demonstrera tekniken dels på AstaZero och dels längs utvalda vägsträckor. Testerna skall validera den tekniska lösningen och testa både basstationsbyte och skifte mellan referensstationer.Projektet koordineras av RISE och övriga deltagare är AstaZero, Caliterra, Einride, Ericsson, Lantmäteriet, Scania, AB Volvo och Waysure. För mer information kontakta Stefan Nord ( på RISE. 

Positionering på AstaZero. A0REF består av 3st Nätverks-RTK referensstationer monterade på tre olika ställen på testanläggningen AstaZero. Dessa har i samarbete mellan Lantmäteriet, MT och AstaZero placerats på AstaZero för att erbjuda referenspunkter med en noggrannhet på mm-nivå (s.k. ankarpunkter). Dessa kan sedan användas för att mäta in andra objekt på banan eller mätinstrument för att mäta på fordon, t.ex. position och hastighet, med spårbar noggrannhet. För mer information kontakta Stefan Nord ( på RISE. 

Implementering av självkörande bilar: Överblick av problem och möjligheter avseende samhälleliga och etiska aspekter är ett projekt vid Institutet för Framtidsstudier i samarbete med KTH, som löper under delar av 2019 och 2020 inom ramen för Trafikverkets forskningsprogram ”Vision Zero Academy”. Som projekttiteln antyder är målet med projektet är att analysera etiska och samhälleliga aspekter avseende implementeringen av självkörande fordon. Projektet syftar å ena sidan att ge en bred överblick över vilka etiska frågor som förtjänar att belysas ytterligare. Å andra sidan kommer projektet bidra till att genomföra två djupare analyser av två sådana frågor. Först kommer vi analysera etiska maskinbeslut med avseende på självkörande fordon. Sedan kommer vi att analysera ansvarsfrågor rörande informationsflöden och människors personliga integritet. För mer information besök projektets websida eller kontakta Björn Lundgren ( på Institutet för Framtidsstudier. 

Human Interaction with Automated Vehicles in Cities. This topic will be addressed in a new EU-project called Supporting the interaction of Humans and Automated vehicles: Preparing for the Environment of Tomorrow (SHAPE-IT) that will start in October 2019 and be coordinated by Chalmers. The main objective of SHAPE-IT is to facilitate safe, acceptable (and, ideally, desirable) integration of user-centred and transparent AVs into tomorrow’s mixed urban traffic environments, using both existing and new research methods, designing advanced interfaces and control strategies. This project spans three complementary facets of AV/human factors research: 1) understanding the behaviour of different road-users (inside and outside AVs) when interacting with AVs, investigating cognitive processes, predictability, trust, acceptance and safe interaction following an initial, and long-term exposure to AVs; 2) researching design strategies for the interfaces used for communication and interaction between AVs and humans (inside and outside AVs), and 3) integrating knowledge on human/AV interactions into models to perform prospective mixed traffic-AV safety assessments. As Artificial Intelligence (AI) is a core technology for AV development, in this project, we will also seek to integrate knowledge of human factors with that of AI in AV development, reducing the gap between human-factors and AI scientists, and AV software developers. Fifteen PhD-students will be performing research in the project (the recruitment is ongoing), together with their academic and industrial supervisors. For more information visit the project website or contact Jonas Bärgman ( at Chalmers.

Kunskapsunderlag om uppkopplade, samverkande och automatiserade fordon, farkoster och system. Under våren har Trafikanalys haft regeringens uppdrag att ta fram ett trafikslagsövergripande kunskapsunderlag som belyser utmaningar och möjligheter med uppkopplade, samverkande och automatiserade fordon, farkoster och system. Nu har detta publicerats i en rapport som hittas här. Där konstateras bland annat att utvecklingen kommer att ha störst påverkan på vägtrafiken, dels för att denna delsektor är ekonomisk störst och dels för att nyttorna blir mest påtagliga där. Det finns också risk för negativa effekter, som exempelvis risk för ökad vägtrafik som kan motverka de positiva effekterna och bidra till ett mer utspritt boendemönster och försämra underlaget för kollektivtrafik. Delat resande kommer att bli mycket viktigt för att lyckas begränsa den förväntade trafikökningen i urbana miljöer. Vidare konstateras det att utvecklingen rymmer också en rad potentiella målkonflikter; mellan ett kostnadseffektivt och integrerat transportsystem respektive samhällets sårbarhet för extrema risker, mellan enkel och effektiv datakommunikation respektive datasäkerhet, och mellan en storskalig tillgång till data för verksamhetssamordning respektive integritetsrisker. En rekommendation från studien är att det nationella ansvaret för riskhantering klarläggs och att resurser sätts av. Beaktat de osäkerheter som finns om den framtida utvecklingen konstateras att en bred palett av styrmedel kommer att behöva analyseras inför framtiden. För mer information kontakta Lennart Thörn ( på Trafikanalys. 

Autobike – självkörande cykel. Syftet med studentprojektet Autobike är att utveckla en självkörande cykel som ska användas i testmiljöer för autonoma bilar. Innan autonoma bilar lanseras på marknaden testas de i testmiljöer för att säkerställa att de fungerar som de ska och till exempel kan väja för en cyklist som dyker upp helt oväntat.  Projektet sker i samverkan mellan Mälardalens högskola, Chalmers, AstaZero, Cycleurope och Volvo Cars. Under hösten och våren har studenterna arbetat med alltifrån val av cykel och utvecklingen av elektroniken, mjukvaran, programmeringen och mekaniken, till implementering av kontrollsystemet och testning av cykeln. Att få cykeln att balansera var inte det enklaste. Utvecklingen fortsätter efter sommaren. Här och här hittas mer information. 

V-Com. It is a precautionary system that communicates safety-critical information between truck drivers and vulnerable road users that was presented by six final year MSc students from Blekinge Institute of Technology and Stanford University together with Volvo Group Connected Solutions and its Silicon Valley based Innovation Lab Hub at this year’s Stanford EXPE – design experience. In Stanford’s capstone project, ME310, which runs from October to June, they move in a Design Thinking process through phases of needfinding, ideation, prototyping and more to arrive at a final detail designed product to display at the final exhibition, the EXPE. V-Com is a system of sensing, computation and communication components that the students mounted as an add-on on a truck. For more information visit this site or contact Jenny Elfsberg ( at Innovation Lab Hub US at Volvo Group. 

Nytt från svensk forskning

Automated Speed and Lane Change Decision Making using Deep Reinforcement Learning. This paper introduces a method, based on deep reinforcement learning, for automatically generating a general purpose decision making function. A Deep Q-Network agent was trained in a simulated environment to handle speed and lane change decisions for a truck-trailer combination. In a highway driving case, it is shown that the method produced an agent that matched or surpassed the performance of a commonly used reference model. To demonstrate the generality of the method, the exact same algorithm was also tested by training it for an overtaking case on a road with oncoming traffic. Furthermore, a novel way of applying a convolutional neural network to high level input that represents interchangeable objects is also introduced. The paper was presented at the International Conference on Intelligent Transportation Systems (ITSC) in the beginning of November 2018, and a preprint is available at arXiv. For more information contact Carl-Johan Hoel ( at Volvo Group Trucks Technology. 

Självkörande fordon och kollektivtrafik – Hot och möjligheter är ett projekt som undersöker effekter av självkörande fordonsteknik på transportsystemsnivå (med hjälp av bland annat Visum och Sampers). Projektet är finansierat av SLL, löper under 2018-2019 och använder Stockholms län som studieobjekt. Några av de nyckeltal man undersöker är bland annat förändringar i marknadsandel, trängsel och utsläpp. Totalt kommer sex olika framtidsscenarier undersökas med antaganden om ny teknik för både personbilar och för kollektivtrafiken, bl a first/last mile-lösningar och självkörande robotaxis. För tillfället (december 2018) är projektet inne i sista fasen av att fastställa nyckeltal, scenarier och metod men kommer under våren 2019 börja modellera scenarierna. De första resultaten förväntas till sommaren men arbete pågår fram till mitten av hösten. Kontaktperson för projektet är Erik Almlöf ( på Integrated Transport Research Lab på KTH.

Tillit till intelligenta bilar. Första studien av oövervakad automatiserad körning på allmän väg har genomförts i samarbete mellan Volvo Cars, RISE Viktoria och Halmstad Högskola inom det FFI-finansierade forskningsprojektet ”Trust in Intelligent Cars” med Volvo Cars testfordon WOz. Genom att mixa etnografi och experimentellt upplägg har en funktion för automatiserad körning (aktiverad under vissa sträckor) utforskats för en typisk pendlares vardag i Göteborgsområdet. Totalt 19 resor genomfördes av 5 pendlare och resultaten visar på hur en sådan funktion upplevs och hur den beter sig under verkliga trafikförhållanden. För mer information kontakta projektledare Annie Rydström ( eller Jonas Andersson (

Metodutveckling. Med stöd från det FFI-finansierade TIC-projektet, KK-finansierade AIR-projektet och Vinnovas AstaZero utlysning har en explorativ studie på AstaZeros testbana genomförts av RISE Viktoria med Volvo Cars testfordon WOz med syfte till att testa olika sensorers förmåga att fånga användarupplevelse över tid. Genom att testpersonerna upplevde fordonet två gånger med en veckas mellanrum kunde fordonets nyhetsvärde minska och testpersonernas beteenden stabiliseras. För mer information kontakta projektledare Jonas Andersson (

Mobilists of the future. A wealth of actors, both private and public, strive to understand and develop the travelling of the future. Together with our clients, we at Intermetra strive to cultivate and share knowledge of the challenges and opportunities that transportation are facing. This year we’ve looked into the customer perspective on three crucial areas: automated vehicles, sustainable fuels and sharing economy. Our study is based on input from more than 550 Swedes. We’ve also used social media monitoring and quick fire Q&As to deepen our understanding of these areas. We have focused on understanding which groups that are most ripe for behavioural change and what contributes to a transition to use more sustainable transportation. The study will be presented in January at Transportforum 2019. For more information contact Anders Lindahl ( at Intermetra.

DRAMA – DRiver and passenger Activity Mapping. Idén med DRAMA-projektet är att öka möjligheterna för interaktion mellan ett fordon och personerna i fordonet. Detta genom att ge fordonet mer information om vad de personerna som befinner sig i fordonet gör. DRAMA kommer att ta fram en prototyp till ett system som ska kunna användas i ett fordon. Denna prototyp kommer att använda flera kameror som sensorer. Bilder från kamerorna kommer att analyseras med beräkningsmodeller för personers beteende som är baserade på bildbehandlingsalgoritmer och resultaten från maskininlärning. Exempel på information som ska finnas tillgänglig är ansiktsuttryck, kroppsställning och personernas aktiviteter. DRAMA är ett samarbete mellan RISE Viktoria och Smart Eye AB som pågår under tiden 2018-03-01 till 2020-02-29, med ekonomiskt stöd från Fordonsstrategisk Forskning och Innovation (FFI). För mer information kontakta David Lindström  ( på RISE Viktoria och besök projektets webbsida.

HUGO delivery is a startup developing an AGV (autonomous ground vehicle) for package delivery. The robot will focus on modularity and aims to tackle the problems associated with the last mile in the logistics chain. Today, the last mile of delivering packages is a costly, time consuming and unsustainable part of the value chain of consumer goods. HUGO started a Vinnova funded research project in November 2018 together with the Textile school in BoråsEricssonSomething Borrowed and Sportlala. The goal of the research project is to adapt the HUGO robot for circular textile services and investigate the possibilities to improve the return process both from a consumer convenience and sustainability points of view. The project is expected to be finalized in April 2020. For more information contact Minna Sandberg ( or Romy van den Broek ( at Berge / HUGO Delivery.  

SEBRA – SEnsor for Bicycle’s impRoved Awareness. RISE Viktoria, Aptiv och LIRI AB driver tillsammans projektet SEBRA som ska undersöka hur trafiksäkerheten för cyklister kan förbättras genom att minska risken för kollision och konsekvenserna av en kollision mellan cykel och bil eller annat motorfordon. Aptiv utvecklar lösningar inom aktiv säkerhet för fordonsindustrin och LIRI AB är aktivt inom cykelbranschen. Bilar och lastbilar har under senare år utrustats med många olika system för aktiv säkerhet. SEBRA-projektet är ett försök att överföra kunskaper och teknik från denna utveckling till produktutveckling för cyklisters trafiksäkerhet. Ett annat mål med projektet är att förbättra kontakterna och öka samarbetet mellan fordonsindustrin och cykelbranschen. Projektet kommer att ta fram och utvärdera en prototyp där radarsensorer monteras på en elcykel, kombinerat med ett användargränssnitt som ger information till cyklisten om det finns fordon i närheten som ökar risken för kollision. Systemets analys av trafiken i omgivningen och klassificering av vilken risk som olika fordon utgör för cyklisten kommer att vara baserat på dels statistik och litteratur om skador och dödsfall vid kollisioner mellan cykel och bil, och dels på simuleringar av trafikscenarier som kommer att utföras på testbanan AstaZero. SEBRA pågår under tiden 2018-06-01 till 2019-12-31 och har beviljats bidrag från Fordonsstrategisk Forskning och Innovation (FFI). För mer information kontakta Jonas Andersson ( på RISE Viktoria och besök projektets webbsida

Electric Site. Nyligen avslutades forskningsprojektet Electric Site där Volvo Construction Equipment (CE) har elektrifierat och automatiserat delar av en bergtäkt. Lösningen har testats under en 10-veckorsperiod i Skanskas bergtäkt Vikan kross i Torslanda utanför Göteborg. Testerna visar på 98% lägre koldioxidutsläpp, 70% lägre energikostnad och 40% lägre operatörskostnad. Projektet för Volvo CE ett steg närmare framtidsvisionen om tio gånger så effektiva arbetsplatser, med noll olyckor, noll oplanerade stopp och noll utsläpp. Sammantaget stödjer dessa resultat den förutspådda minskningen av den totala driftskostnaden med 25 %. I nuläget är dock minskningen av den totala driftskostnaden bara en prognos. Här kan ni se hur det hela fungerar:

För mer information kontakta Jimmie Wiklander ( på Volvo CE och besök projektets websida

NuMo – New Urban Mobility is a future mobility system developed under a pre-study project ”Urban Infrastructure Opportunities with Autonomous Vehicles” financed by Vinnova through the innovation program InfraSweden2030. NuMo emerges from decades of work across the whole transportation industry including autonomous vehicles, connectivity and electrification. Going beyond today’s time-tabled public transport, NuMo is an on-demand transport system that runs on dedicated infrastructure and allows only certified connected, automated and electric vehicles. Traffic in NuMo is non-stop with very high capacity enabled by vehicle connectivity and control. All stopping is offline or outside the dedicated network. NuMo can be introduced in stages. It starts by integrating with today’s public transport network, and expands with new infrastructure such as bridges, tunnels, and submerged tunnels, and eventually develops into a fully dedicated traffic network. NuMo will make an important contribution to environmental sustainability by accelerating the adoption of electric propulsion, encouraging vehicle sharing, better utilization of vehicles and spaces, reduced construction costs and reduced environmental impacts. The project is coordinated by RISE Viktoria with partners including RISE ECE (Energy and Circular Economy), RISE CBI (Betonginstitutet), LogistikCentrum AB and PLP Architecture. The project ran from June to November in 2018 and will launch a NuMo report in January 2019. For more info contact Lei Chen          ( at RISE Viktoria and visit the project’s website and the Cartube concept.

Svensk forskning när den är som bäst

I fotbollsvärlden pratas det den här veckan mycket om ”the Swedish way” – uthållighet, fokus, målmedvetenhet, teamarbete. Här i nyhetsbrevet tänkte vi fortsätta i samma anda och lyfta fram några svenska forskningsprojekt och resultat som oftast uppkommit tack vare just dessa egenskaper hos våra forskare. Stort tack till er alla som tipsat oss om relevant forskning och skickat in era sammanfattningar!

ESPLANADE ( är ett FFI-projekt som löper från januari 2017 till december 2019. Målet är förbättrad metodik för att visa att automatiserade fordon är säkra. Projektet fokuserar på fordon med ADS-funktioner (Automated Driving System) på nivå 4 enligt SAE-skalan (ett fordon som kan köra helt utan förarinteraktion under begränsade förutsättningar). Vi vet att sådana funktioner har ett antal karakteristiska skillnader mot traditionella fordonsfunktioner där säkerhetsbevisning sker enligt standarden ISO 26262. En ADS-funktion har full kontroll över fordonet, och en viktig del av säkerheten ligger därför i att systemet kör på ett säkert sätt, dvs tar taktiska beslut som inte försätter fordonet i farliga situationer. Därför behöver vi metoder för att säkerställa att systemet tar taktiskt säkra beslut. Andra problem som projektet arbetar med rör hur man visar att sensorernas prestanda är tillräckliga för uppgiften i varje givet ögonblick, vilka arkitekturmönster som är användbara för en ADS, hur man hanterar säkerhetsbevisning för system med icke-deterministiska algoritmer (AI, machine learning), hur man gör hazardanalys för en ADS med en mycket komplex situationsanalys, säkerhetsbevisning för förarinteraktion, och hur man visar fullständigheten i kravnedbrytning för komplexa system. Projektet koordineras av RISE och övriga deltagare är Aptiv, Comentor, KTH, Qamcom, Semcon, Systemite, Veoneer, Volvo Cars, Volvo AB och Zenuity.

Rullande busskur. Detta är ett FFI-projekt som löper från maj 2018 till oktober 2018 och som syftar till att förstå möjligheter och begränsningar ur ett tekniskt perspektiv när det gäller självkörande småbussar på landsbygden, förstå möjligheter och begränsningarna ur ett beteendeperspektiv, dvs. acceptansen av den tekniska innovationen hos resenärer och allmänheten, hitta lämpliga geografiska områden inom Skellefteå kommun där upplägget skulle kunna testas, samt få en bild av kostnaderna och nyttorna. Målet med studien är att skapa förutsättningar för en framtida ansökan för ett demonstrationsprojekt.

HARMONISE är ett FFI finansierat projekt  med målet att undersöka olika sätt att harmonisera, förenkla, hantera och förbättra hur förare interagerar med tekniska system som automatiserar delar av eller hela den dynamiska körningen i fordonet. Projektet är ett samarbete mellan Volvo AB, Volvo Cars och RISE Viktoria. Projektet kommer att utveckla och testa olika koncept, som stödjer interaktionen mellan förare och fordon på ett multimodalt sätt och utveckla designriktlinjer. Projektet utforskar problematiken när en förare tror att hon/han har mer support (nivå 4) än vad som för tillfället erbjuds.  Nya rön från distribuerad kognition och kroppslig kognition (embodied cognition) utforskas som teoretisk grund. Mer information om projektet hittas här och kontaktperson är Emma Johansson (

Människor och interaktiva autonoma system. Sam Thellmans forskarstudier i kognitionsvetenskap vid Linköpings universitet (huvudhandledare: Tom Ziemke) undersöker hur människor förstår interaktiva autonoma system, som sociala robotar och självkörande fordon. Avhandlingens syfte är att belysa hur, när och varför människor tillskriver autonoma system intentionella tillstånd, som mål (t.ex. “bilen vill till punkt X“) och övertygelser (t.ex. “bilen har sett fotgängaren”), och hur detta påverkar människors förmåga att interagera med autonoma system. I forskningsarbetets första etapp undersöktes människors tolkningar av beteende hos människolika robotar (Thellman, Silvervarg, & Ziemke, 2017) och självkörande bilar (Petrovych, Thellman, & Ziemke, in press), det senare i samarbete med VTI/Linköping. Relevanta publikationer:

  • Petrovych, V., Thellman, S., & Ziemke, T. (in press). Human Interpretation of Goal-Directed Autonomous Car Behavior. In CogSci 2018: Changing Minds. 40th Annual Meeting of the Cognitive Science Society, Madison, VA. Cognitive Science Society.
  • Thellman, S., Silvervarg, A., & Ziemke, T. (2017). Folk-psychological interpretation of human vs. humanoid robot behavior: exploring the intentional stance toward robots. Frontiers in psychology, 8, 1962.

Optimala manövrar. Victor Fors har i sin licavhandling vid Linköpings universitet tittat på vad som händer när bilen gör en manöver nära gränsen för vad den faktiskt klarar av för att undvika att krascha. Målet på kort sikt är att få en uppfattning om hur optimala manövrar ser ut, och på längre sikt att bygga in insikterna från avhandlingen i ett säkerhetssystem för förarlösa fordon. Avhandlingen går under titel Optimal Braking Patterns and Forces in Autonomous Safety-Critical Maneuvers och ingår i det stora WASP-programmet, Wallenberg Autonomous Systems and Software Program, finansierat av Knut och Alice Wallenbergs stiftelse.  Vid frågor kontakta Victor Fors (

NPAD (Network-RTK Positioning for Automated Driving) är ett projekt finansierat av Vinnova FFI som skall utforma ett system för stora volymer automatiserade fordon eller andra mobila plattformar med behov av noggrann positionering. Projektet staratade i maj och kommer pågå till april 2020. Det kommer att genomföras i flera steg där en demonstrator kommer att utformas baserat på krav från både automatiserad körning och andra mobila plattformar. Projektet skall bland annat: a) definiera kraven för positionering för automatiserad körning, b) analysera kraven på ett distributionssystem för korrektionsdata, c) utforma ett referenssystem på AstaZero för utvärdering av mätosäkerhet hos positioneringssystem och d) utföra test och validering av systemet baserat på en automatiserad fordonsapplikation från Einride. Projektpartners är: RISE, AstaZero, Ericsson, Lantmäteriet, AB Volvo, Scania, Einride, Waysure och Caliterra. Kontaktperson är Stefan Nord (

Drivers quickly trust autonomous cars. Successful introduction of autonomous cars requires autonomous technology that users experienced as trustful and useful. The aim of this study conducted by Volvo Cars within the FFI-project Human Expectations and Experiences of Autonomous Driving (HEAD) was to explore if drivers trust a fully autonomous car and if they experience that in-vehicle tasks can be conveniently carried out when in full autonomous mode. The test was conducted on a test track and an autonomous research car was used. The car was capable of handling the test track driving environment with full autonomy. When in full autonomous mode the participants got to engage in individually selected tasks, such as use media display, read, eat, drink and carry out work tasks with their own portable device. The results show that participant trust the autonomous car and they find it convenient to conduct in-vehicle tasks while in full autonomous mode. The study will be presented at the AHFE-conference this summer:

  • Broström, R., Rydström, A., Kopp, C., (in press) Drivers quickly trust autonomous cars. In the 9th International Conference on Applied Human Factors and Ergonomics, July 2018, Orlando, Florida, USA.

Customer perspectives. Intermetra Business & Market Research Group AB conduct studies mainly for the public sector in Sweden, with a focus on passenger transport. Among our most recent studies is a cross industry study on the customer perspective on Mobility as a Service in collaboration with RISE. We are now in the process of finalizing the result on a study on customer perspective on autonomous vehicles. The study has been conducted by a web survey to a representative sample of the Swedish population, with 500+ completed surveys. The study covers questions such as the Swedes knowledge and attitudes towards autonomous vehicles, as well as alternative sources of fuel. The results are expected to be available by the end of July. For more info, contact Markus Lagerqvist (

CoEXist is a European project (May 2017 – April 2020) which aims at preparing the transition phase during which automated and conventional vehicles will co-exist on cities’ roads. CoEXist aims at enabling mobility stakeholders to get “AV-ready” (Automated Vehicles-ready). To achieve its objective, CoEXist develops a specific framework and both microscopic and macroscopic traffic models that take the introduction of automated vehicles into account. The tools developed in the framework of CoEXist are tested by road authorities in the four project cities: Helmond (NL), Milton Keynes (UK), Gothenburg (SE) and Stuttgart (DE) in order to assess the “AV-readiness” of their local-designed use cases. Swedish partners in the CoEXist project is VTI and the City of Gothenburg. Homepage: Contact Johan Olstam ( for more information.

SMART. The aim of the SMART project is to enhance and further develop todays state-of-the-art traffic models in order to enable analysis of future traffic systems. The project consists of two PhD projects, one focusing on microscopic traffic simulation and the behaviour of and interaction between conventional and automated vehicles, and one focusing on mesoscopic simulation and fleets of automated vehicles. The project is carried out by VTI, KTH and LiU and is funded by Trafikverket via Centre for Traffic Research (CTR). Contact Johan Olstam ( or Wilco Burghout ( for more information.

Predicting  driver actions.The largest factor in traffic accidents today are human errors. There are many ways, in which problematic behaviors such as inattention can be mitigated. One of the tools used for this purpose is warning systems. There are situations where a warning system based on information from only one given point in time can provide an insufficient time window for the driver to react. A prediction of future events could be used in order to increase the amount of time between the warning and the dangerous event. This study explores possibilities of using recurrent neural networks with long short-term memory for prediction of eight different driver actions inside of a vehicle, such as glancing and reaching inside of the vehicle among others. These predictions, in turn, could potentially be used to improve a warning system and give a driver more time to react to a given situation. The predictions are based on sequences of actions, which are generated from sequences of images with a convolutional neural network. A dataset, consisting of sequences of images, used in the study was gathered at RISE Viktoria AB. The hyperparameters of the recurrent neural network, such as the number of hidden units and amount of layers, was chosen with Bayesian optimization. An addition of a parallel input of optical flow created from the input images was found to improve the performance of the convolutional neural network. The complete network achieved an average prediction accuracy of 87% for the next frame predictions and 67% after 20 frames. A comparison where the predictions were set to the last element in the input achieved an accuracy of 80% for one frame ahead and 50% after 20 frames. The study is part of Martin Torstensson’s masters’ thesis that was conducted as a part of the research projects DRAMA– Driver and passenger activity mapping (funded by FFI) and AIR– Action Intention Recognition (funded by KK-stiftelsen):

  • Torstensson, M., (in press) Prediction of Driver Actions With Long Short-Term Memory Recurrent Neural Networks. Master Thesis. Chalmers University of Technology, 2018.

Predicting pedestrian behavior. Behavior of pedestrians who are moving or standing still sufficiently close to the street could be one of the most significant indicators about pedestrian’s instant future actions. Being able to recognize the activity of a pedestrian, can reveal significant information about pedestrian’s crossing intentions. Thus, the scope of this study is to investigate ways and methods in order to understand pedestrian´s activity and in particular their motion and head orientation to the traffic. Furthermore, different featuresand methods were examined, used and assessed according to their contribution on distinguishing between different actions. Those were Histogram of Oriented Gradients (HOG), Local Binary Patterns (LBP), Bag of Words and CNNs. All the aforementioned features (HOG, LBP…etc) were extracted by processing still images of pedestrians. In this project, still images extracted from video frames depicting pedestrians walking next to the road or crossing the road are used. The study focuses in three parts, one is to derive the pedestrians action regarding if they are walking or not. The second is to identify the pedestrian´s head orientation in terms of if he/she is looking at the vehicle or not. The final task is to combine these two measures in a classifier that is trained to predict the pedestrian´s crossing intention and action. In addition to the pedestrian’s behavior for estimating the crossing intention, additional features about the local environment were added as input signals for the classifier, for instance, information about the presence of zebra markings in the street, the location of the scene, the weather conditions etc.  Moreover, several Machine Learning techniques were used after extracting the features (HOG, LBP etc…)   both for understanding the behavior of the pedestrian and for predicting the final action. Those were Support Vector Machines, k-nearest neighbor, Decision Trees. The data used in this thesis come from the Joint Attention for Autonomous Driving (JAAD) dataset. This study is done as a part of Dimitris Varytimidis ( masters’ thesis within the research project AIR– Action Intention Recognition (funded by KK-stiftelsen):

  • Varytimidis, D., (in press). Detection and intention prediction of pedestrians in zebra crossing. Master thesis. Halmstad University, 2018.

PRoPART ( is a H2020 project (December 2017-November 2019), funded by the European Global Navigation SatelliteSystem Agency (GSA), focusing on positioning of automated vehicles and advanced driver assistance systems. The main purpose of the project is to develop and enhance an RTK (Real Time Kinematic) software solution by both exploiting the distinguished features of Galileo signals as well as combining it with other positioning and sensor technologies. RTK gives the possibility of cm-level accuracy using correction data from reference stations. The PRoPART partners are RISE, AstaZero, Scania, Waysure, Fraunhofer IIS, Ceit-IK4, Baselabs and Commsignia. Contact person is Stefan Nord (

Multiantennsystem för förbättrad positionering inomhus och för autonoma fordon

I veckan som gått försvarade Dr. Marco Marinho vid Högskolan i Halmstad sin avhandling som handlar om hur multiantennsystem kan används för noggrann positionering, både i inomhusmiljö och utomhus för autonoma fordon.

Multiantennsystem används redan i bl.a. wifi-routrar och mobilmaster för att förbättra kommunikationen. Den nya tekniken som presenterades i avhandlingen har fokuserat på att öka noggrannheten i positionering. Resultaten visar att noggrannheten i positioneringen bli så hög som 1 cm.

Forskningen har framförallt handlat om energieffektivisering inom systemet samt interaktion mellan mobila enheter och stationära sensornätverk. Tekniken har även studerats praktiskt för att möjliggöra kommunikation mellan fordon i lastbilskonvojer.

Egen kommentar:

Att förbättra positionering med hjälp av trådlös kommunikation är ett bra komplement till traditionella SLAM-algoritmer. Med så bra noggrannhet som rapporteras i avhandlingen så kommer det möjliggöra många nya applikationer, allt från navigering för autonoma fordon och flygfarkoster till inomhusnavigering för räddningsinsatser vid bränder.


[1] Louise Wandel: Multi antenna systems improve indoor positioning and autonomous vehicles, Högskolan i Halmstad 2018-03-05 Länk

Bästa magisteruppsatsen 2017 utsedd av SAIS

SAIS (Swedish Artificial Intelligence Society) tillkännagav i veckan att Thomas Rosenstatter på Högskolan i Halmstad är vinnaren av SAIS Best AI Master’s Award 2017 [1].

Uppsatsen som belönats med utmärkelsen handlar om ett system som kan skapa bättre situationsmedvetenhet för automatiserade fordon. Systemet introducerar ett tillit-koncept som med hjälp av både egna och omgivande fordons sensorer bygger modeller över hur pålitligt det egna fordonet är, omgivande fordon samt infrastrukturen.

Systemet kan t.ex. användas för bättre sensorfusion. Systemet vet i förväg att vissa platser har opålitlig GPS-signal eller att kommunikationen är skymd bakom en viss lastbil, eller att ett fordon har ett riskfyllt beteende och därför ökar systemet säkerhetsavståndet till detta fordon.

Systemet utvecklades inom ramen för Grand Cooperative Driving Challenge (GCDC) 2016 där laget från Högskolan i Halmstad tog hem segern i maj 2016. Länk till tidigare nyhetsbrev om GCDC.


[1] SAIS Best AI Master’s Thesis Award 2017, Swedish AI Society 2017-04-25 Länk

GCDC 2016: Tävlingen avgjord

28-29 maj var det dags för Grand Cooperative Driving Challenge (GCDC) 2016. Det var fem år sedan första GCDC anordnades av TNO i Holland på testmotorvägen A270 mellan Eindhoven och Helmond i Holland.

Tio lag från Lettland, Spanien, Frankrike, Tyskland, Holland och Sverige deltog i tävlingen som handlade om tre scenarion för kooperativ och automatiserad körning.

I tävlingen använde fordon exempel på nästa generations kommunikationsprotokoll för kooperativ körning som bl.a. möjliggör förhandling mellan fordon. Fordonen utförde till exempel automatiskt filbyte på motorväg som föregicks av förhandling för att fordonen skulle bestämma vilket fordon som skulle öppna en lucka för vilket. Det andra scenariot gick ut på att köra igenom en T-korsning utan trafikljus, fordonen förhandlade om vilket fordon som skulle passera som första, andra och tredje fordon genom korsningen.

Det tredje scenariot handlade om att utryckningsfordon, med hjälp av kommunikation och HMI i andra uppkopplade fordon skulle kunna begära i vilken fil de vill ha fri väg när de är under utryckning.

Vinnare i tävlingen var studenter från Högskolan i Halmstad som tävlade med en Volvo S60, på andra plats kom Team AnnieWay från KIT Karlsruhe som tävlade med en personbil från Mercedes och på tredje plats placerade sig KTH som tävlade med en lastbil från Scania.

GCDC 2016 arrangerades inom FP7-projektet i-GAME där TNO, TU/e (Techniche Universitet Eindhoven) från Holland, Idiada från Spanien och Viktoria Swedish ICT.

Här finns senaste nyheterna från GCDC2016 länk:

Egen kommentar

De svenska lagen som deltog i GCDC 2016 arbetade tillsammans med stöd från SAFER inom projektet CoAct, en fortsättning på det projekt som ledde Högskolan i Halmstad, Chalmers och KTH till placering 2,3 och 4 i GCDC 2011.