Etikettarkiv: KTH

Guldkorn från svensk forskning

Det här är svenska guldkorn från er läsare. Tack för ert fantastiska jobb.

Autonoma leveransfordon i interaktion. Inom projektet GLAD (Goods deliveries under the LAst mile with autonomous Driving vehicles) genomfördes under maj månad en användarstudie där en ADV (Automated Delivery Vehicle) utrustad med s.k. eHMI:er (visuella medel som kommunicerar till människor i omgivningen) körde en kortare rutt. Syftet var att utvärdera hur individer uppfattade och förstod eHMI:erna i olika situationer, samt hur de kan utvecklas. Preliminära resultat indikerar att eHMI:erna i sig inte kommunicerade sina specifika budskap, men att de i sina givna sammanhang blev begripliga. Resultaten visade även på tydliga inlärningseffekter, d.v.s. deltagarna lärde sig snabbt eHMI:ernas budskap. Projektet är finansierad av Trafikverket och utförs av RISE, Clean Motion, Aptiv, Combitech och Högskolan i Halmstad. Kontakt: Mikael Söderman, RISE, (mikael.soderman@ri.se)

Förstudie SMART-projektet. Som en del av det EU-finansierade SMART-projektet genomför RISE en förstudie kring förutsättningarna för att komplettera kollektivtrafiken med förarlösa tjänster i Skaraborg. Projektet leds av Destination Läckö/Kinnekulle som är ett kommunalt bolag ägt av Götene och Lidköping. Preliminära resultat visar att det i några av tätorterna finns intressanta systemeffekter värda att studera närmare men att det är svårt att hitta lämpliga lösningar för lite längre avstånd mellan kollektivtrafikens hållplatser och populära utflyktsmål eller uppför Kinnekulles de branta vägar. Det finns också sträckor i området där det antagligen finns en marknad för kommersiella tjänster med manuellt framförda fordon. Kontakt: Håkan Burden, RISE, (hakan.burden@ri.se)

Generering av dimma och väderklassificering. RISE och Veoneer har under våren 2022 genomfört en förstudie ”Dimhöljt” för lära hur dimma kan skapas i klimatkammare. Syftet med den genererade dimman är att testa lidar, t ex för att filtrera bort störningar, för att validera simuleringsmodeller, för att verifiera sensorprestanda eller för att verifiera att en funktion är inom ODD. Det finns i princip tre olika sätt att slå sönder vatten till fina droppar: med vibrationer, med trycksatt vatten eller med tryckluft; man kan även generera dimma genom att kondensera ånga. Dimma är våta aerosoler i storleksordning från våglängden av synligt ljus till en faktor 20-50 ggr större. Projektet har också undersökt hur mätning av dimmans karaktäristik utförs på lämpligt sätt. Mätningar måste bland annat inkludera storleksfördelning av partiklar och mängden vatten i flytande form. Det är viktigt att skapa repeterbart testsystem med dimma. I projektet studerades därtill hur man med en lidar kan klassificera vädertyper såsom dimma, regn, snö, klart väder. Studien baserades på mätningar utomhus och i klimatkammare. De inledande försöken har varit framgångsrika och tanken är att förstudien ”Dimhöljt” följs av en fördjupad ansats. Förstudien delfinansierades av Vinnova/FFI, 2021-02582. Kontakt: Martin Sanfridson, RISE, (martin.sanfridson@ri.se)

Autonoma fordon för blinda, döva och dövblinda. I en nyligen publicerad journalartikel vid namn ”Vibrotactile guidance for trips with autonomous vehicles for persons with blindness, deafblindness, and deafness” presenteras resultat från Drive Sweden projektet ”Guidning till autonoma fordon för blinda, döva och dövblinda”. Studien visar bland annat på vikten av att beakta användarperspektivet för hela resan, inte bara fordonet i sig. Artikeln finns att läsa här. Kontaktperson Jonas Andersson (jonas.andersson@ri.se)

Best student paper på IEEE konferens. Vid konferensen IEEE Intelligent Vehicles Symposium vann doktoranden José Manuel Gaspar Sánchez och industridoktoranden Truls Nyberg från KTH och Scania första pris i kategorin ”Best student paper” med artikeln ”Foresee the Unseen: Sequential Reasoning about Hidden Obstacles for Safe Driving”. I samarbete mellan KTH och Scania har studenterna utarbetat en algoritm för autonoma fordon för att hantera skymda trafikanter på ett säkert och effektivt sätt. Forskningen har finansierats genom Vinnovas center TeCOSA och forskningsprogrammet WASP.
Andra pris i kategorin gick till industridoktoranden Magnus Gyllenhammar vid KTH och Zenseact för artikeln ”Uncertainty Aware Data Driven Precautionary Safety for Automated Driving Systems Considering Perception Failures and Event Exposure”, också den finansierad genom WASP. Kontaktperson Truls Nyberg (truls.nyberg@scania.com)  & Magnus Gyllenhammar (gyllenhammar@zenseact.com). 

Syntetisk data för validering. En vanlig utmaning inom maskininlärning är att ta fram realistisk data både för att träna sina nätverk samt för att validera dem. I dag är en vanlig metod att samla in data i den miljö där nätverket ska appliceras, t.ex. i trafiken, och sedan hoppas att det resulterande datasetet ska vara representativt. Detta är tyvärr sällan fallet eftersom att det är svårt att få med alla tänkbara scenarion. Inom FFI-projektet DIFFUSE utvecklas metoder för att skapa syntetisk data och bilder primärt för valideringssyften. Tanken är att förbättra de maskininlärningsmetoder som i dagsläget bara i begränsad omfattning ger kontroll över vad den resulterande bilden innehåller. Kontaktperson Martin Torstensson (martin.torstensson@ri.se)

Future mobility services in Ride the future-project. Ride the future is a multi-brand pilot where 8 partners join forces in running three autonomous buses along a 4 km route in Linköping’s Valla district. The partners are VTI, Linköping University, Linköping Science Park, Transdev Sweden AB, Östgötatrafiken, Linköpings kommun, Akademiska Hus and RISE. The area includes residential housing, businesses and the campus of Linköping University (LiU). 
Ride the future is furthermore one of the sites in the larger Horizon 2020-project called SHOW (SHared automation Operating models for Worldwide adoption), and a platform for several projects related to future mobility solutions. To date over 20 studies and research projects – completed and ongoing – are related to Ride the Future. A result conference was held 26 April and presented findings about the following topics:

  • Lessons learned from setting up a demonstration site with autonomous shuttle operation; paper (funding: SHOW)
  • Mobility for all – but who is ”all”?  paper (funding: Drive Sweden)
  • 5 feasibility studies (funded by VTI and summarised in here) about
    • Towards a digital twin of campus Valla for co-simulation of road users 
    • Exploring spatio-temporal accessibility in Lambohov: a pre-study. 
    • Data processing and visualization of mobile air quality measurements. 
    • Road surface unevenness and its impact on comfort and vibrations in low speed vehicles
    • Infrastructure needs at bus stops. 
  • The following studies were also presented at the conference. (funding in brackets):
    • Säkerhetsförarens uppmärksamhet och vakenhet (FFI)
    • The digital infrastructure of ELIN’s data collection (SHOW=EU)
    • Automated Vehicles as Social Agents: A Research Agenda (ELLIIT)
    • Cybersecurity of autonomous vehicles (Drive Sweden)
    • Digital guidance in public transport (funding: ERA-net)
    • Children’s perspective on future travels by autonomous bus (SHOW)
    • Autonomous shuttles for all – Experiences from children with intellectual disability (WASP-HS)
    • Game engine simulation of autonomous buses in a student project (LiU)
    • Ljudsignaler i interaktion mellan autonoma bussar och oskyddade trafikanter (LiU)
    • For more information and contact to project leaders, please get in touch with Ingrid Skogsmo (ingrid.skogsmo@vti.se)

Säkerhetskultur för automatiserade fordon. Målet för projektet Säkerhetskultur för automatiserade fordon är att utveckla metoder och verktyg för att kunna hantera säkerhetskulturen i organisationer som konstruerar och implementerar automatiserade fordon och maskiner. Projektet kommer att utforska befintlig säkerhetskultur och nya risker, samt utveckla mätinstrument för säkerhetskultur och pröva hur de kan appliceras på hållbarhet- och jämställdhetskultur. Säkerhetsfokus har länge legat på fordon och förare. Nu behövs organisationens och kundens betydelse lyftas fram. I projektet kommer därför en modell och verktyg utarbetas för att integrera säkerhetskultur i utvecklingsarbetet och för att stötta en lärandeprocess. Modellen utvecklas och utvärderas på två fallstudier från olika domäner, dels autonoma truckar samt automatiserade bussar i projektet Ride the future. En viktig aspekt av projektet är kunskaps och metodiköverföring mellan de olika tillämpningarna och mellan parterna VTI, RISE, Volvo GTT, Combitech och Toyota material handling. Projektet finansieras av Vinnovas FFI-program och genomförs på två år under ledning av VTI. Kontaktperson: Christina Stave (christina.stave@vti.se).

Studie om lastbil-VRU interaktioner inom FFI-projekt. Inom ramarna för FFI-finansierade projektet ”Externa interaktionsprinciper för förtroende och acceptans av tunga autonoma fordon” som bedrivs av Scania, RISE och Högskolan i Halmstad har doktoranden Victor Fabricius och kollegor publicerat en vetenskaplig tidskriftsartikel ”Interactions Between Heavy Trucks and Vulnerable Road Users—A Systematic Review to Inform the Interactive Capabilities of Highly Automated Trucks”. Artikeln syftar till att ge en översikt av den vetenskapliga litteraturen gällande dagens interaktioner mellan tunga lastbilar och oskyddade trafikanter – mer specifikt fotgängare och cyklister. En av insikterna från studien är att en stor del av interaktionen består av implicit kommunikation som till exempel fordons körsätt och rörelsemönster, och att den här typen av kommunikation i framtiden troligtvis kommer utgöra grunden även för interaktioner med automatiserade fordon. En annan insikt från studien är också att explicit kommunikation, i form av exempelvis ljussignaler på lastbilen i syfte att förtydliga lastbilens avsikter och handlingar, kan vara till nytta för interaktionerna. Utformning och nyttan av sådan kommunikation undersöks vidare i projektet som pågår fram till mitten av oktober 2022. Kontaktpersoner: Yanqing Zhang (yanqing.zhang@scania.com) och Daban Rizgary (daban.rizgary@ri.se)

Autonomous vehicle interactions in the hub. Scania, RISE, Boliden and Icemakers are working together in a research project “In the Hub – Samspel mellan operatörer och förarlösa fordon i framtidens transportsystem” funded by FFI. The aim is to investigate how natural interaction technologies can be integrated into autonomous transport systems to facilitate efficient and engaging experience in the hub contexts. An exploratory study have examined the potential of using verbal interaction and augmented reality (AR) to facilitate collaborations between professional human operators and unmanned self-driving heavy vehicles. Concepts that support operators in loading situations were designed and evaluated with forklift operators and rock-loading operators during a video-based study. Overall, the concepts received high scores in perceived efficiency and user experience. The results from the forklift operators supported the idea that more natural and social verbal interaction between operators and unmanned vehicles could lead to increased trust and acceptance compared to using simple voice commands. However, the results from the rock-loading operators showed that extensive use of voice interaction could become disturbing. The exploratory study thus supports the potential of using and further exploring verbal interaction and AR to facilitate human operators’ collaboration with self-driving vehicles, and the proposed concepts provide promising examples of interaction models for further investigation and implementation. The results have been presented in a paper which will be published in the conference “Applied Human Factors and Ergonomics” this year. Contact person: Yanqing Zhang (yanqing.zhang@scania.com) and Johan Fagerlönn (johan.fagerlonn@ri.se)

Heavy Automated Vehicle Operation Center (HAVOC) – Requirements and HMI design is a recently completed FFI-funded research project conducted by RISE and Scania with the following final project summary: Development trends suggest that, in spite of the optimistic announcements made by some stakeholders a few years ago, there are still technological challenges and regulatory constraints making heavy automated vehicles (HAVs) dependent on human control. Indeed, most HAV still require a human safety operator in the vehicle, and automated driving without a human “fallback” might be distant. At the same time, having a human safety operator in the vehicle jeopardises major anticipated benefits of HAVs – transport safety and efficiency. To bridge this gap, stakeholders are exploring remote operation technology, which enables HAV to be remotely operated by a human operator to some extent. The purpose of the HAVOC project was to study operator work and HMI for remote monitoring and control of heavy autonomous vehicles. The aim was to answer the following research questions:

  • What requirements are imposed on people and heavy vehicles for assessment, assistance, and driving?
  • What is required to scale the ratio between the number of operators and the number of monitored vehicles?
  • How should operator work be designed for transitions between assessment, assistance, and driving?
    A simulator was developed in Unity game engine with corresponding 3D-world and operator HMI to enable exploration of remote operation of ten vehicles in parallel. In a user study, 15 participants were invited to work for 1.5 hours and evaluate the system and work in terms of human-automation interaction. Human factors and HMI requirements were elicited for remote assessment, remote assistance, and remote driving operator tasks. The results show the importance of taking a systems perspective in developing and implementing remote operation control centers. See this link for an overview of the study and its results.
  • One of the major takeaways from the user study and the HAVOC project is the importance of a systems perspective in the analysis and design of future remote operation centers. The answer to questions such as “How many operators are needed?, How many vehicles can be monitored and controlled?, What is the best HMI?, What are the most important operator tasks?”  etc., will always rely on the dependencies between multiple human, technical and organizational factors. The ability to deal with the dependencies between factors such as operators’ skills and knowledge, operator tasks and training, HMI, vehicle capabilities, operational context, etc., lies in defining the envisioned work system and deciding what to design for. If a viable business case for remote operation is an operator:vehicle ratio of 1:1, 1:10 or 1:100 will place very different demands on overall human-automation systems design and work organisation. In this project, we have only considered single operator work. In a real application, teamwork between remote operators, traffic planners, and field personnel can be expected, further stressing the socio-technical systems approach. Contact person: Jonas Andersson (Jonas.andersson@ri.se)

Självkörande racerbil från KTH

Hundra studenter ifrån Kungliga Tekniska Högskolan (KTH) har slutfört ett tre-årigt projekt vid namn DeV17 där man utvecklat en eldriven och självkörande racerbil [1].

Detta är den 16e bilen i den serie projekt man utfört sedan 2004. Skillnaden mellan den här racerbilen och föregående års modeller är b.la att denna har en självbärande kaross, fyrhjulsdrift via navmotor, och bättre självkörning.

DeV17 bilen är kvalificerad för den internationella designtävlingen: Formula Student Germany, som hålls 15-21 augusti på racerbanan Hockenheimring i Tyskland.

Källa

[1] KTH. 100 studenter bakom avancerad, ny racebil. 2022-05-24 Länk

Två nya svenska projekt

SALIENCE4CAV. Safety lifecycle enabling continuous deployment for connected automated vehicles (SALIENCE4CAV) är ett nytt FFI-finansierat projekt kring metoder som stödjer smidig utveckling av säkerhetskritiska system i uppkopplade och automatiserade fordon. Projektets mål är att ta fram metoder för säkerhetsbevisning som passar i en iterativ utvecklingsprocess med kontinuerliga uppdateringar. Projektet leds av RISE med Agreat, Comentor, Epiroc, KTH, Qamcom, Semcon, Veoneer och Zenseact som partners. Projektet kommer att pågå i 2.5 år. Länk

5G Ride – Connected Control Tower. Under 2020 demonstrerades självkörande skyttlar i Stockholm inom ramen för projektet 5G Ride. Nu har projektet fått fortsatt finansiering från Vinnova via Drive Sweden för utveckling av ett fjärrkontrollcenter som stöd till självkörande fordon. Projektet leds av Urban ICT Arena som är en del av Kista Science City AB med Ericsson, Intel, Keolis, T-Engineering, Telia, KTH, Stockholms stad och Region Stockholm som partners. Projektet kommer att pågå till slutet av 2021. Länk

Guldkorn från svensk forskning

Dessa guldkorn är bidrag från våra läsare – stort tack för det, och för all fantastisk forskning och utveckling som ni gör. Keep up the good work!

iQ-Pilot & iQ-Mobility. These are two recently finished projects co-funded by the Strategic vehicle research and innovation programme (FFI). The focus of the projects was development of new technology to realize flexible, energy-efficient transport solutions in cities. Several proof-of-concept prototypes have been developed and demonstrated, including autonomous buses and a smart coordination system for bus fleets. The research results were presented in a webinar earlier this week. These results are the joint efforts of Scania, Ericsson, INIT, Veoneer, Royal Institute of Technology (KTH) and Örebro University. 

Human interaction with autonomous minibuses. Tom Ziemke’s research group at Linköping University, in collaboration with researchers at VTI, will during the autumn start a new research project on people’s interaction with autonomous minibuses on campus. The research will focus on method development and empirical studies of how pedestrians, bicyclists and car drivers interact with the buses. A two-year postdoc position is available via this link (application deadline: August 5). For more information contact Tom Ziemke (tom.ziemke@liu.se).

GLAD – Goods delivery under the Last mile with Autonomous Driving vehicles. Small autonomous electric delivery vehicles (ADV) are expected to transform transportation of goods under the first and last mile. The advantages are increased transportation and energy effectiveness, but it is also important that these vehicles are safe and accepted in society. The aim of the GLAD project is to develop an initial knowledge base on efficiency, safety and human experience of ADVs for the first and last mile delivery of goods in Sweden, and on how to create a balance between these three aspects from a socio-technical perspective. To achieve this, the project will utilize Zbee vehicles that will be adapted in terms of vehicle design and autonomous vehicle behaviour, human-machine interface, teleoperation and vehicle management. The overall goal is to develop knowledge that accelerate introduction of new efficient goods delivery in our society and contributes to meeting the goals of Agenda 2030. This will be assured also by connecting a licentiate candidate to the project. The project is co-funded by Trafikverket and involves RISE, Halmstad University, Aptiv, Combitech and Clean Motion. It started in June 2020 and will run for ca 2 years. For more information contact azra.habibovic@ri.se.

Tactical Decision-Making in Autonomous Driving by Reinforcement Learning with Uncertainty Estimation. Reinforcement learning (RL) can be used to create a tactical decision-making agent for autonomous driving. However, previous approaches only output decisions and do not provide information about the agent’s confidence in the recommended actions. This paper investigates how a Bayesian RL technique, based on an ensemble of neural networks with additional randomized prior functions (RPF), can be used to estimate the uncertainty of decisions in autonomous driving. A method for classifying whether or not an action should be considered safe is also introduced. The performance of the ensemble RPF method is evaluated by training an agent on a highway driving scenario. It is shown that the trained agent can estimate the uncertainty of its decisions and indicate an unacceptable level when the agent faces a situation that is far from the training distribution. Furthermore, within the training distribution, the ensemble RPF agent outperforms a standard Deep Q-Network agent. In this study, the estimated uncertainty is used to choose safe actions in unknown situations. However, the uncertainty information could also be used to identify situations that should be added to the training process. The paper will be presented at the Intelligent Vehicles Symposium (IV) in October 2020, and a preprint is available on arXiv. The code that was used is also available on GitHub For more information, contact Carl-Johan Hoel (carl-johan.hoel@volvo.com) at Volvo Autonomous solutions. This work was partially supported by the Wallenberg Artificial Intelligence, Autonomous Systems and Software Program (WASP), funded by Knut and Alice Wallenberg Foundation, and partially by Vinnova FFI.

Autonomous Mapping of Unknown Environments Using a UAV. As part of the research conducted within the project LASH-Fire (Eu-Horizon 2020, No.814975), RISE supervised the work of Chalmers students developing an automatic object search for indoor environments using a flying drone. At the core of this system a reinforcement learning (RL) algorithm was implemented for the drone to navigate, detect obstacles, recognize objects and explore the environment. This machine learning (ML) project marks a starting point for further development towards an autonomous identification and surveillance solution in a wide range of study cases where cargo ships, like the ones studied in LASH-Fire, are an ideal target application. A modularized approach was used targeting research areas such as obstacle avoidance, object detection & recognition, simultaneous localization and mapping, etc. The exploration module was specially challenging and will require further work but the project in general was successful in providing a methodology and tools when using flying drones for indoor environments. The Master’s thesis was conducted by Erik Persson and Filip Heikkilä, and is available via this link. For more information contact boris.duran@ri.se

Projektet ESPLANADE, som började 2017 och avslutades sista mars 2020, handlade om hur man visar att ett automatiserat fordon är säkert. Det finns flera problem som måste hanteras för att man ska kunna göra en komplett säkerhetsargumentation. Projektets resultat inkluderar därför nya metoder för säkerhetsargumentation för en ADS, några av dessa är: 

  • En process för säkerhetsanalys samt designprinciper för interaktionen när en människa överlämnar kontrollen över ett fordon till en ADS eller tvärtom. Processen innehåller existerande metoder som sekvensdiagram, orsak-konsekvensanalys och felträd, men applicerade på människa-maskininteraktion istället för enbart tekniska system
  •  Hur man definierar den operativa designdomänen (ODD) för en ADS utgående från önskade användningsfall, vilket innebär en definition av parametrar inom vilka en ADS-funktion är avsedd att fungera, samt strategier för att säkerställa att fordonet håller sig inom sin ODD.
  • En metod (kallad QRN) för riskanalys och framtagande av säkerhetsmål. Till skillnad från vanliga riskanalysmetoder bygger den inte på analys av specifika situationer utan på definition av acceptabel frekvens av incidenter med olika allvarlig konsekvens, och en mappning av incidenter till olika klasser av konsekvenser. Säkerhetsmålen uttrycks så att man säkert hamnar inom acceptabla frekvenser.
  • Ett ramverk för formell och systematisk hantering av säkerhetskrav med en kombination av åtgärder under utveckling och under drift, bland annat baserat på modeller av osäkerhet.
  • Användning av metoden funktionsanalys för att distribuera beslutsfattande på en ADS-arkitektur samt framtagande av säkerhetskrav.
  • Säkerhetskontrakt och komponentbaserad design för att underlätta kompletthetsbevisning i kravnedbrytning, möjliggöra kontinuerlig produktuppdatering, samt kunna uttrycka säkerhetskrav för sensorsystem som inkluderar kamera, radar mm.

En publik rapport och länkar till de flesta av projektets publikationer finns på projekthemsidan.

Prepare Ships Project. Running for 26 months, the H2020 project “Prepare Ships”, funded by the European Global Navigation Satellite System Agency (GSA), was successfully started in December 2019. The 5 consortium partners, coming from 3 European countries have developed a machine learning based future position prediction for ships in order to avoid ship collisions and close quarter situations as well as reducing environmental impact by more advanced decision making. In a RTK (Real Time Kinematic) software solution, it will both exploiting the distinguished features of Galileo signals as well as combining it with other positioning and sensor technologies. It will use the next generation maritime communication techniques VDES and the new suit of IALA Standards (S100) on sea charts. The innovation developed during the project can make more autonomy of navigation feasible by exchanging future positions and allow eased decision making on ships, suitable to become an international game changer for the future of autonomous shipping. The demonstration and testing will be done onboard three different vessels in the Gothenburg archipelago. The project is coordinated by RISE with partners from across Europe, including SAAB, Lantmäteriet, Telko and Anavs. For more information check out our homepage, join our linkedin group or contact Johannes Hüffmeier at RISE (johannes.huffmeier@ri.se).  

How do you ensure safety of autonomous shipping? Today’s risk assessment methods, application of methods and models used in shipping are usually based on humans being directly in charge of ships, VTS, port controls, etc. and may not be sufficient to reflect and evaluate the complexities and inherent risks of introducing further automation and digitalization in the shipping domain. The introduction of smart ships will create traffic situations between manned and unmanned ships where on one hand decisions and actions are based on algorithms and on the other hand by a human operator where a large part of the decision making. Increasing the level of automation implies that the goal-based standards for shipping need to be based on a risk assessment that reflects the expected roadmaps towards more smart ships and so far, research on autonomous transportation has focused on other parts than the effect of introducing and mixing different levels of automation and only very basic standards have been proposed by classification societies, where DNVs standards [DNV, 2018] have two pages in the appendix on basic set-ups for testing and validation. The main objective of the RFAF project financed by Trafikverket is to analyse how autonomous navigation can be proven to be safe. The aim of the project is to perform a simulator-based risk identification for autonomous shipping traffic. Increasing the level of automation implies that the goal-based standards for shipping need to be based on a risk assessment that reflects the expected roadmaps towards autonomy. Based on two use cases, the routes Fredrikshamn-Göteborg and crossing of the Ljusterö fairway, relevant risks are identified based on ship simulations performed by mariners describing especially nautical challenges for more autonomous shipping resulting in a common risk model. The project lasts from January 2020-December 2022. There are 3 project partners with RISE as coordinator. For more information visit the project website or contact Johannes Hüffmeier (johannes.huffmeier@ri.se).

The SWEA-financed (Energimyndigheten) Data-driven Optimised Energy Efficiency of Ships is a national project involving 7 ship owners, 3 companies from the supply chain and RISE, lasting for 16 months. The data analysis of energy consumption is often complex and there are different driving forces for decisions. However, increased data collection can be unprofitable if you do not have methods to analyze the complex systems. Developments within machine learning provides new opportunities to develop both technically and economically powerful tools energy efficiency. Even today, to some extent, economic driving is applied, for example. eco-driving, however, the effect is in many cases limited as decision-making is more complex than the operator / navigator can see. Also, not always available incentives and motivation of individuals to reduce energy use. However, data collection is increasing both quality review and analysis are not performed to the same extent. Using the results of the project’s data collection and analysis, recommendations can be given about which tools which can be developed in a next step, such as: a) nudging, decision support system or autopilot for ECO driving, b) route optimization based on the ship’s accelerations and motions, and c) decision support based on statistics or real-time analysis of data to identify optimal operation (parameters such as sea state, current, speed, load condition, etc.). The objectives of the project are to: a) Achieve reduced energy use on the project’s vessels by 10–35% both at quay and in sea operations, b) Demonstrate potential with machine learning of operational data, and c) Demonstrate the possibility that better operational data may form the basis for the development of generic energy efficiency tools for smaller vessels in commercial traffic. For any details on the project, reach out to Johannes Hüffmeier (johannes.huffmeier@ri.se).

Photonics Private Public Partnership Roadmaps for EU’s next Framework Program Horizon EuropéThe area of photonics for automotive applications is a significant area which includes not only photonics sensors for the EU defined topic Mobility and Safety for automated Road Transport. Photonics also plays a role in the path towards the targets of Zero Emission Road Transport, Clean Energy Transition, and the Industrial Battery Value Chain. The work of defining the Strategic Research Agenda (SRA) in the specific area of Photonics with EU industrial partners, universities and research centers is performed through the EU technology platform ”Photonics21”, which is funded by the EU commission. The current roadmap for Photonics was published in the document: “Europe’s age of light! How photonics will power growth and innovation, Strategic Roadmap 2021–2027” The section on Automotive and Transport can be found in section 3.9. The coordinator of the whole Photonics 21 is done by VDI Technologiezentrum GmbH in Düsseldorf, Link. We believe this is important as there are a lot of EU research money at stake. The current recommendation by the European Parliament for the whole Horizon Europe budget 2021 -2017 is €120 Billion. The research funding will be divided among many topics where Climate, Energy, and Mobility is one of the clusters. There is a large Swedish interest in the cluster and cooperation with industry is one important factor in the program. Most, if not all, of the European automotive industry are usually involved in at least selected programs.

Now, based on feedback from the new European Commission, the board of Photonic21 have decided to reshape the roadmap and as a consequence automotive & transport will henceforth be combined with the topics of climate and energy. Besides merging the different topics in one document, this gives us an opportunity to revise the previous document into something that we believe should support our industry even better, considering that the current document was prepared in 2018 and the present situation the industry is facing. We want to ensure that the guiding document capture the specific needs of the automotive industry. The aim of the work is to define the research topics of the Strategic Research Agenda (SRA) which will define the upcoming calls in the Horizon Europe program. 

We now invite comments on the current chapter and roadmap (provided in the link above). Determined by EU commission schedules this work has to be completed on 4 September, why we need your input no later than 24 August 2020. We ask for specific text suggestions and specific roadmap suggestions (compare with p. 140 in the above mentioned Strategic Roadmap). Please forward your suggestions to Jan-Erik Källhammer at jan-erik.kallhammer@veoneer.com. He acted as chair of the group Automotive and Transport in the current roadmap and now act as co-chair of the new group Climate, Energy, and Mobility together with Dr. Heinz Seyringer of V-Research GmbH in Austria. 

Mer om 5G

Förra veckan skrev vi att Ericsson och Telia lanserat 5G i Stockholm. I samband med detta missade vi dock att rapportera att Tele2 (Göteborg, Stockholm, Malmö) samt Tre (Malmö, Lund, Helsingborg, Västerås, Uppsala och Stockholm) också lanserat varsitt 5G-nätverk [1, 2]. Spännande tider!

Kopplat till 5G-uppkopplingen så kan ni också passa på att se några illustrationer på hur 5G skulle kunna nyttjas för förarstödssystem (ADAS) i framtiden. Dessa exempel inkluderar varning för vattenplaning (5G aquaplaning alert), varning för dolda fotgängare (Hidden pedestrian alert) och förstärkt information om trafikskyltar (Augmented road sign information). Dessa premiärvisades i slutet av 2019 och har tagits fram i samarbete mellan Ericsson, Audi, TIM, Pirelli, Qualcomm, Italdesign, Tobii och KTH. 

Källor

[1] Tele2. Tele2 har lanserat Sveriges första publika 5G-nät. 2020-05-24 Länk

[2] Tre. ​Tre lanserar 5G i Skåne, Uppsala, Västerås och fler delar av Stockholm i juni. 2020-05-24 Länk

Inspiration från CHI-konferensen

Årets upplaga av konferensen Human Factors in Computing Systems (CHI) skulle ha hållits i slutet av april på Hawaii. Konferensen blev inställd, och istället blev det några nationella och regionala online aktiviteter där bidrag från CHI presenterades och diskuterades.

På den nordiska delen av konferensen, Nordic CHI, presenterades ett 50-tal artiklar inom olika områden. Två relevanta områden var mobilitet samt drönare och robotar. Här är en kort sammanfattning av fyra artiklar för inspiration:

Misslyckade interaktioner med robotar och förkroppsligande effekter. Kontogiorgos och kollegor ifrån KTH undersökte i sin studie skillnaden mellan en människoliknande robot och en ”högtalarrobot”. Deras experiment visade att användare interagerade mer frekvent med roboten om den var människoliknande, medan frekvensen av interaktioner minskade drastiskt över tid med högtalarroboten. Under tidspress däremot så hade användarna en bättre interaktion med högtalarroboten än med den människoliknande roboten. Länk

Etik i rörelseinteraktion mellan människa och drönare. Sara Eriksson och kollegor ifrån Stockholms universitet, KTH, Florida Atlantic University, Norwegian University of Science and Technology och Luleå tekniska universitet undersökte interaktion mellan människa och drönare i dans. Forskarna utgick ifrån teorin om somaestetik som kan beskrivas som kroppsligt medvetande. Forskaren som myntade begreppet somaestetik Prof. Richard Shusterman är en av forskarna i det här bidraget. Länk

Interaktion och styrning av robotsvärm. Kim och kollegor ifrån Stanford University i Kalifornien och ABB Corporate Research Center bidrag handlade om styrning av robotsvärmar genom gester, verbala kommandon och pekrörelser, mer specifikt hur människor föredrar att kontrollera robotsvärmar och om antalet robotar i en robotsvärm påverkar hur man styr. Forskarna upptäckte bland annat en minskning i antal fingrar och en ökning i antal händer (två kontra en) som används för kommandon när antal robotar ökade. Länk

Externa gränssnitt för samverkan mellan automatiserade fordon och fotgängare. Detta är en studie som är baserad på online crowdsourcing och som delvis gjorts inom FFI-finansierade förstudien Scale-up. Studien gjordes i samarbete mellan Eindhoven University, RISE, och LMU Munich och gick ut på att ta reda på vilken färg och rörelsemönster hos ett externt gränssnitt som associeras med ”jag ger dig företräde” signalen. Länk

Fler artiklar från CHI-konferensen hittar ni här.

Två nya svenska projekt

Självkörande fordon på landsbygd. Projektet bedrivs av Ramboll, RISE, Trafikverket och kommunerna Skellefteå, Eskilstuna, Gotland och Lund och ska utreda möjligheterna att komplettera kollektivtrafik på svensk landsbygd med självkörande fordon givet kommuners lokala omständigheter och tekniska möjligheter [1]. Detta är en genomförbarhetsstudie som finansieras av Drive Sweden och Trafikverket och är en uppföljare till förstudien om samma ämne som slutfördes under våren 2019. 

REmote Driving Operation (REDO)Projektet bedrivs av VTI, CEVT, NEVS, Einride, Ericsson, KTH, Voysys och Ictech och ska undersöka olika aspekter av fjärrstyrda vägfordon, både personbilar och lastbilar [2]. Projektet delfinansieras av Vinnova, har en budget på ca 20 mijoner kronor och kommer att pågå i tre. 

Källor

[1] Ramboll. Självkörande bussar i landsbygd ökar tillgängligheten. 2020-02-04 Länk

[2] Ictech. Ictech deltar i ett av de största svenska forskningsprojekten kring fjärrstyrning av vägfordon. 2020-01-31 Länk

Svensk forskning: Framtiden är ljus

MICA. CoEXist. SMART. PLATT. PRoPART. PERCEPTRON. PRELAT. DENSE. Barmark. BRAVE, HATric. Ja, så heter några av projekten som ni har äran att läsa om i årets sista sammanställning av relevant svensk forskning. För varje gång blir jag mer och mer imponerad av vår forskning och forskare. Det är fantastiskt att se hur mycket görs i vårt ”lilla” land, och det här är nog bara en bråkdel av det hela! Vi behöver bara bli bättre på att sprida våra resultat, och jag hoppas att OmAD bidrar till detta. Något annat vi behöver bli bättre på är att koppla samman våra projekt till en helhet och visa hur de leder till positiva samhällsförändringar. Kanske ett lämpligt nyårslöfte?

Stort tack till er alla som bidragit till den här sammanställningen! Det hade inte varit möjligt utan era bidrag och engagemang.

Modeling driver behavior in interactions with other road usersDriver models help improve and evaluate systems for road crash mitigation and avoidance. As systems develop and address increasingly complex scenarios. Driver models also need to be developed to be able to account for the interactions among these road users. Even as we improve driver modeling with control-theory models and actual data-driven implementations, existing driver models fail to sufficiently take interaction among road users into consideration. This paper addresses this insufficiency by proposing a new operational framework to computationally model interactions among road users. For this purpose, we introduce a definition for interaction among road users. The modeling framework is demonstrated by a specific driving scenario: the overtaking of a cyclist when an oncoming vehicle may be present. In this scenario, modeling driver interaction using Unified modeling language within our framework can lead to improved crash mitigation and avoidance through tailored system activation of automated emergency braking. This is a paper that will be presented at TRA-conference next year. The work was partly carried out at SAFER and within the FFI-project Modelling Interaction between Cyclists and Automobiles (MICA). For more information contact Prateek Thalya at Veoneer (prateek.thalya@veoneer.com).

Researchers from Veoneer have also published several other relevant papers, contact Ola Boström (ola.bostrom@veoneer.com) at Veoneer for more information: 

  • Occupant activities and sitting positions in automated vehicles in China and Sweden – The 26th International Technical Conference on the Enhanced Safety of Vehicles (ESV)
  • Passenger Car Safety Beyond ADAS: Defining Remaining Accident Configurations As Future Priorities Conference: The 26th International Technical Conference on the Enhanced Safety of Vehicles (ESV)
  • Intersection AEB Implementation Strategies for Left-Turn Across Path Crashes – Traffic Injury Prevention (ADAS)
  • A Model of Indian Drivers’ Ratings of In-Vehicle Alerts to Pedestrian Encounters on Roads in India, for presentation at the coming Human Factors and Ergonomics Society’s 2019 International Annual Meeting
  • Benefits of intuitive auditory cues for blind spot in supporting personalization; ESV2019
  • Adaptive Transitions for Automation in Cars, Trucks, Busses and Motorcycles; Intelligent Transport Systems (got invited for a journal track after the ITS World Congress)
  • How do oncoming traffic and cyclist lane position influence cyclist overtaking by drivers? – Shown at ICSC and submitted to AAP journal
  • Radar Interference Mitigation for Automated Driving – IEEE Signal processing magazine
  • How do drivers negotiate intersections with pedestrians? Fractional factorial design in an open-source driving simulator – AAP
  • Modelling discomfort: How do drivers feel when cyclists cross their path? – AAP

Driver/passenger activity mapping. FFI funded DRAMA project (2018-2020) addresses knowledge building around activity identification of drivers and passengers in vehicles to improve interaction between them and the vehicle. Mapping and detecting activities at drivers and passengers is important for both UX and traffic safety. With knowledge about activites, the HMI can be adjusted to, the currently most efficient modality. If the vehicle knows the body posture of the passengers safety functions such as airbags, brakes and steering system can be adjusted by the safety systems in the vehicle. The project develops a system that can recognizes individual and interaction activities of driver and passengers in vehicles of high level of automation (SAE3+). The project studies from literature the most relevant activities of driver and/or passenger in highly automated vehicles in terms of safety and comfort. The developed prototype acquires input data from multiple cameras mounted in the cabin of a vehicle and classify the detected activities according to the chosen in-cabin activities of interest. Machine learning algorithms are used to extract timeseries of activity features including: Body poses, head position/eye gaze/face landmark, objects, dense optical flow, and detected activity/interaction. The work is a collaboration between RISE AB and Smart Eye AB. For more information contact Thanh Hai Bui (thanh.bui@ri.se) at RISE, or Henrik Lind (henrik.lind@smarteye.se) at Smart Eye AB.

Mimicking professional bus drivers. Scania and KTH Royal Institute of Technology are currently researching motion planning algorithms for autonomous buses driving in cities. The research has so far discovered that current motion planning approaches, which are suitable for passenger vehicles, are not successful at driving buses in cities. The problem arises due to the large dimensions of buses, but mostly due to the particular chassis configuration, where the wheelbase length is much shorter than the vehicle length, resulting in large vehicle overhangs. The research then focuses on how to use these overhangs to increase the maneuverability of buses driving in cities. The result is a new motion planning approach which allows buses to briefly drive with the overhangs outside of the road and over curbs, in order to drive along narrow roads and sharp turns, while ensuring the safety of the drive. The first results of this work have been recently published in the Intelligent Transportation Systems Conference 2019. The paper can be accessed via IEEE here, or arXiv here, and a video of the results here. This work was partially supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation. For more information contact Rui Oliveira (rui.oliveira@scania.com) from the KTH Royal Institute of Technology.

CoEXist is a European project (May 2017 – April 2020) which aims at preparing the transition phase during which automated and conventional vehicles will co-exist on cities’ roads. CoEXist aims at enabling mobility stakeholders to get “AV-ready” (Automated Vehicles-ready). To achieve its objective, CoEXist have developed an assessment framework including both microscopic and macroscopic traffic models that take the introduction of automated vehicles into account. The tools developed in the framework of CoEXist are tested by road authorities in the four project cities: Helmond (NL), Milton Keynes (UK), Gothenburg (SE) and Stuttgart (DE) in order to assess the “AV-readiness” of their local-designed use cases. Swedish partners in the CoEXist project is VTI and the City of Gothenburg. Preliminary results from the traffic modelling show decreases in traffic performance in an introductory stage with lower penetration rates and AVs with limited capabilities and cautious driving logics while higher penetration rates of more advanced AVs leads to a modal change from public transport to private cars. Final event will be held in Milton Keynes (UK) on 25-26 March 2020, Homepage: https://www.h2020-coexist.eu/. Contact Johan Olstam (johan.olstam@vti.se) for more information.

SMART. The aim of the SMART project (Simulation and Modelling of Automated Road Transport) is to enhance and further develop todays state-of-the-art traffic models in order to enable analysis of future traffic systems. The project consists of two PhD projects, one focusing on microscopic traffic simulation and the behaviour of and interaction between conventional and automated vehicles, and one focusing on mesoscopic simulation and fleets of automated vehicles for public transport operations. The licentiate thesis Simulation based evaluation of flexible transit was presented by the PhD student David Leffler on June 13th, 2019. The project is carried out by VTI, KTH and LiU and is funded by Trafikverket via Centre for Traffic Research (CTR). Contact Johan Olstam (johan.olstam@vti.se) or Wilco Burghout (wilco@kth.se) for more information.

PLATT – Policylab för Autonoma Transporttjänster. Inom ramen för DriveSweden (Vinnova) har PLATT har Volvo GTT, Einride, Combitech och RISE bedrivit policyutveckling tillsammans med offentliga och kommersiella aktörer inom transportnäringen. Därigenom har vi identifierat en rad utmaningar som de sökande står inför. Det handlar både om att kunna budgetera för ansökan i form av kostnad och ledtid men också hur man vet vad som ska ingå i en ansökan. Men vi har också sett en rad olika strategier för att hantera den osäkerheten. Dels beprövade strategier som använts både specifikt inom fordonsutvecklingen och generellt inom svensk myndighetsutövning, dels nya strategier som sätter fingret på hur man kan hantera säkerheten vid införande av ny teknologi utan att hämma innovationstakten. Genom att bjuda in brett till projektets aktiviteter har vi också samlat på oss många praktiska tips på hur man som sökande både kan påverka hur lång tid det tar att få igenom en ansökan men också mängden arbete man behöver lägga ner på en framgångsrik ansökan. Tipsen belyser också aspekter som inverkar gynnsamt på hur försöksverksamheten uppfattas av omvärlden, t.ex. räddningstjänsten och allmänheten. Här hittar ni slutrapporten och projektets hemsida. För mer information kontakta Håkan Burden på RISE (hakan.burden@ri.se). 

Driving automation state-of-mind: Using training to instigate rapid mental model development. I takt med att automatiserade funktioner blir alltmer avancerade och vanliga, ökar också kraven på användarens (förarens) förståelse för korrekt användning. Inte förrän den mänskliga föraren helt kan ersättas kommer förarens förståelse av systemen vara en kritiskt komponent i att fordonet (människan tillsammans med de automatiserade systemen) framförs säkert på vägen. Finns det då något sätt att snabb-träna förare i hur man ska använda sådana system? Den nyligen publicerade studien ämnade undersöka just detta. Tidigare forskning inom förarträning och inlärning kombinerades till en tränings-metodik som sedan inkorporerades i ett träningsprogram ämnad att träna noviser i användningen av ett hypotetiskt förarassistanssystem motsvarande SAE Level 2. Resultaten indikerade inte bara att automations-träning av förare är möjlig, utan kanske viktigast av allt att de tränade förarna i betydligt större utsträckning var benägna att ingripa i situationer som krävde det (baserat på systemets begränsningar) jämfört med deras otränade motparter. Studien gjordes inom ramen för FFI-projekt HATrick. För mer information kontakta Martin Krampell (krampell@gmail.com).

PRoPART finalized. After 24 months of work, H2020 project „PRoPART”, funded by the European Global Navigation Satellite System Agency (GSA), was successfully closed. The 7 consortium partners, coming from 4 European countries have developed an RTK (Real Time Kinematic) software solution by both exploiting the distinguished features of Galileo signals as well as combining it with other positioning and sensor technologies. RTK gives the possibility of cm-level accuracy using correction data from reference stations. The innovation developed during the project can be a game changer for the future mass market of autonomous transport. The final demonstration was done in November at AstaZero and here you can see a movie and presentation material. The project was coordinated by RISE with partners from across Europe, including Scania, AstaZero and Waysure. For more information contact Stefan Nord at RISE (stefan.nord@ri.se).  

PERCEPTRON är ett FFI-projekt är ett samarbete mellan Volvokoncernen, Semcon och Chalmers som avslutas nu vid årsskiftet. Målsättningen med PERCEPTRON har varit att ta fram ett koncept för kontinuerlig datadriven utveckling vilket inbegriper infrastruktur för att ta hand om loggad data, design av neurala nätverk, träning och validering. Ett resultat av projektet är tre neurala nätverk att exekvera i fordonet för objektdetektering, detektering av filmarkeringar och vägdetektering. Nätverken har tränats på insamlad och annoterad data för lastbil på svenska vägar. En översiktlig utvärdering av hårdvara och programvara för användande neurala nätverk har också gjorts för att ge vägledning åt utvecklare. För ytterligare information kontakta projektledare Carlos Camacho, Volvokoncernen.

PRELAT är ett FFI-projekt som slutar vid årsskiftet efter fem års samarbete mellan Volvokoncernen och Chalmers. Projektet har arbetat med fully convolutional neural network för fusion av kamera och lidar i syfte att uppnå robust vägdetektion och klassificering av vägmarkeringar för lateral filhållning. Ett tidigt resultat pekar på nyttan av använda lidar för snabb och noggrann vägdetektion. Ett annat resultat från PRELAT är på vilken detaljnivå fusion av kamera och lidar bör utföras. Slutligen är ett tredje resultat hur semi-supervised training kan utformas i syfte att minska mängden kostsam annotering. PRELAT och PERCEPTRON har varit en del av den snabbt expanderande utvecklingen och användningen av neurala nätverk inom fordonsindustrin. Resultaten har bidragit med ökad förståelse och kommer att användas i framtida projekt i Volvokoncernen. För ytterligare information hänvisas till projektledare Martin Sanfridson, Volvokoncernen

Universally designed mobility for increased accessibility to societal functions. A consortium of organisations in West Sweden (Västra Götalandsregion, Västtrafik, RISE, Norconsult Astando AB, with user organisations SRF and DHR) have collaborated on a number of projects with the vision of working towards autonomous and universally designed mobility for increased accessibility to societal functions. A series of projects performed by the consortium have explored the following subjects:

  • Samverkande system för sjukresor och sjukhus (eng. Cooperative systems for medical journeys and hospitals). How a System-of-systems approach can be utilised to bridge accessibility gaps when making service journeys between public transport and hospital departments. (funded by Vinnova FFI)
  • Autonoma skyttelbussar för ökad tillgänglighet till viktiga samhällsfunktioner (eng. Autonomous shuttle busses for increased accessibility to important societal functions). Pre-study for a trial of autonomous shuttle-busses at Sahlgrenska Hospital in Gothenburg. (funded by Västra Götalandsregion kollektivtrafiknämnden)
  • Guidning till autonoma fordon för blinda, döva och dövblinda (eng. Guidance to autonomous vehicles for persons with blindness, deafness and deaf-blindness) Guiding for journeys with autonomous vehicles for people with blindness, deafness and deaf-blindness. (funded by Drive Sweden – Vinnova, Energimyndigheten och Formas)

A combination of methods including design-thinking workshops, user-trials, field studies, service-design methods and innovation processes have been utilised to ensure that user needs have been clearly understood and taken into consideration in design of potential solutions. The studies have resulted in increased understanding of the needs of users with visual impairments in autonomous transport systems and how public authorities can contribute to designing services that reduce barriers to independent travel. A large number of service improvements and solutions have been identified. Methods for using vibro-tactile communication to guide users with visual impairments to public transport have been evaluated. A plan for a one year test of autonomous busses in a hospital environment is undergoing an approval process within the regional authority. The insights gained from these projects have already begun to create value. Many solutions can be applied to existing public transport solutions. However to create future transport solutions which are created with accessibility for all from the outset, the results require more communication for example to vehicle manufacturers, city and public transport planners and more. For more information contact Steve Cook at Norconsult (Steve.Cook@norconsult.com). 

What happens to self-driving cars if the weather turns bad? Current systems offer comfort and safety in good weather. However, they often fail to sense its surroundings in visibility conditions with heavy rain, snow or fog causing the automated systems to stop their support. The DENSE project, under the ECSEL joint undertaking and co-financed by EU and national funding bodies, addresses this key challenge of autonomous driving by developing an environment perception technology that extends the performance of sensors in adverse visibility conditions. The project designs, tests and validates a generic sensor suite that enables driver assistance systems and autonomous driving systems to operate also in adverse weather. The DENSE 24/7 all-weather sensor suite combines Radar, Short-Wave Infrared (SWIR), gated camera sensor, and LIDAR. In addition, a mobile Road State Sensor assesses the road surface conditions. For maximizing efficiency, DENSE implements a high-level fusion platform integration between the individual sensors. DENSE use artificial neural networks to fuse all sensor information at pixel level, leading to an enriched and enhanced multi-spectral image. The system has been integrated in a test vehicle and demonstrated under controlled conditions in a weather chamber and evaluated under real-life conditions in Central and Northern Europe. Project duration is between June 2016-February 2020. There are 15 project partners with Daimler as coordinator. For more information visit the project website or contact Jan-Erik Källhammer at Veoner (jan-erik.kallhammer@veoneer.com).

Projekt Automatiserad vägdrift med kortnamn ”Barmark” har som målsättning att genom automatisering av drift- och underhållsfordon bidra till förbättrad arbetsmiljö, ökad resiliens samt minskade säsongsvariationer vid val av transportslag. Projektet tar fram ett fordon som kör och navigerar självständigt längs en definierad rutt samtidigt som det utför ett arbetsuppdrag och interagerar med omgivningen. Inom projektet sker fordonsanpassning exv. av bromssystem, midja och EHI styrning, utveckling och anpassning av sensorsystem exv. drönarburna radarsystem, ultraljud, GPS/Video samt utveckling och anpassning av webbaserad front-end med loggning av fordon med förare i trafik. Vidare utförs analys av infrastruktur och testscenarier inför projektdemonstrationer som kommer utföras kommande vinter- och sommarsäsong. Projektgruppen utgörs av RISE, Semcon, CIT, Peab, Swevia, Skanska, Svensk Markservice, Trafikverket, Alkit, Teade, AstaZero och Lundberg Hymas, där RISE är koordinator. Projektet pågår 2018-05-01 till 2020-08-30 och finansieras av det strategiska innovationsprogrammet InfraSweden2030, en gemensam satsning av Vinnova, Formas och Energimyndigheten samt av projektpartners. For mer information kontakta Viveca Wallqvist på RISE (viveca.wallqvist@ri.se). 

Användargränssnitt för att upptäcka oskyddade trafikanter I syfte att förbättra tilltro och acceptans för SAE nivå 3. I EU-projektet BRAVE, Bridging gaps for the adoption of Automated VEhicles som koordineras av VTI, Statens väg- och transportforskningsinstitut, bedrivs forskning för att bidra till förbättrad säkerhet och acceptans av automatiserade fordon. I projektet har VTI under hösten genomfört en studie i körsimulatorn Sim IV på Lindholmen i Göteborg. Bakgrunden till studien är att implementering av automatiserade körsystem på SAE nivå 3 i urbana miljöer utgör en utmaning, i det att återkommande och svårförutsägbara interaktioner mellan fordon och oskyddade trafikanter behöver hanteras. För att adressera utmaningen har projektet utvecklat ett koncept för användargränssnittet som håller föraren informerad om närvaron av oskyddade trafikanter i den närliggande omgivningen. Genom att göra denna typ av information tillgänglig för föraren ges hen möjlighet att avsluta uppgifter av sekundär karaktär, såsom att se på film och liknande, och i samarbete med systemet övervaka körningen fram till dess att det är säkert att återgå till sekundära uppgifter. I körsimulatorstudien fick deltagare med och utan erfarenhet av supportfunktioner på SAE nivå 2 köra i en urban miljö samtidigt som dom kunde titta på film. Nivån av information angående oskyddade trafikanter varierades över fyra betingelser: (1.) ingen information, (2.) en varning för att förmå föraren att återta kontroll när en kollision var nära förestående, (3.) en förvarning som meddelade om närvaron av oskyddade trafikanter, samt (4.) kombination av varnings- och förvarningskoncepten. Studiens resultat visar att en strategi för användargränssnittet som integrerar förvarnings- och varningsmeddelandet är den lösning som är att föredra för att förbättra säkerheten, samtidigt som förarens tilltro till systemet förbättras. Vidare visade studien att tidigare erfarenhet av SAE nivå 2 är avgörande för om strategin fungerar eller inte. Resultaten stödjer design av användargränssnitt för automatiserade körfunktioner baserat på behov, preferenser och förmågor hos förare för att säkerställa bättre acceptans och säkerhet. För mer information om projektet kontakta Niklas Strand, Ignacio Solis Marcos eller Ingrid Skogsmo på VTI eller se www.brave-project-eu eller följ projektet på Twitter @BRAVE_H2020 

Drive Sweden Forum 2019

I går 12 september gick årets Drive Sweden Forum av stapeln med ca 270 deltagare. Drive Sweden är ju ett av 17 strategiska innovationsprogram (SIP) som finansieras av Vinnova, FORMAS och Energimyndigheten. Lindholmen Science Park är värdorganisation med Sofie Vennersten som programledare och Jan Hellåker som ordförande och har mer än 120 partners från 13 länder – 4 nya medlemmar presenterades på konferensen. Programmet blir alltmer internationellt, med samverkan såväl i EU- finansiering som gemensamma projekt. Man har också nu en person i Silicon Valley och har samarbete med Singapore.

Drive Sweden finansierar lite mer banbrytande projekt inom hållbar mobilitet, som exempelvis KOMPIS, LIMA och KRABAT. Man ger också ut nyhetsbrevet Smart Mobility samt har ett antal andra aktiviteter. Man gör nu ett omtag och lanserar en ny struktur, med delarna Society Planning, Digital Infrastructure, Policy Development, Business Models och Public Engagement, med fokus på såväl person- som godstransporter. Man har nu en öppen utlysning Innovationer för ett digitaliserat och automatiserat transportsystem för människor och gods som stänger 5 november.

Här korta sammanfattningar från några av konferensens föredrag.

David Green från Lynk & Co pratade om företagets vision att förändra mobilitet med hjälp av digitalisering för att ge en bättre kundupplevelse. För detta krävs samverkan med externa parter och man har skapat en öppen samverkansplattform colab.lynkco.com.

Ulrik Janusson och Marie Bemler från Scania visade några framtida möjliga scenarios för digitalisering inom godstransporter. Två viktiga parametrar är öppenhet i delning av data och hur mycket klimatfrågan slår igenom.

Hur kan man samverka med allmänheten när man designar framtida mobilitetstjänster och därmed nå en bättre acceptans för till exempel självkörande fordon? Detta har Vaike Fors från Högskolan i Halmstad studerat. En lärdom är att man måste gå bortom att bara titta se ”användare” och ”stadsinvånare” till att se alla som människor med olika behov, kunskaper och värderingar.

Våra kollegor Kent Eric Lång och Håkan Burden från RISE Viktoria berättade om policy-labbprojektet PLATT som tittar på möjliga strategier för att underlätta för självkörande fordon även från nya aktörer. En viktig strategi är att kunna bygga förtroende, trust, istället för tidigare typgodkännande-rutiner. Projektet är snart slut och man söker nu nya initiativ runt policy-utveckling.

Samtidigt måste samhället kunna hantera både att skapa goda näringslivsförutsättningar för ny teknologi och också bibehålla och förbättra säkerheten i trafikmiljön och därmed bygga förtroende, vilket Anna Fridén från KOMET, Kommittén för teknologiskt innovation och etik som den svenska regeringen tillsatt, berättade om.

Stefan Myhrberg från Ericsson talade om digital infrastruktur för automatiserade fordon, där man bland annat etablerat Drive Sweden Innovation Cloud, där Drive Sweden-medlemmar kan lagra och dela data från fordon, infrastruktur, parkeringsplatser, kameror etc. 5G är då en möjliggörare för att tillräckligt snabbt hantera de stora datamängderna som krävs när många enheter blir uppkopplade.

Olof Johansson från Trafikverket visade en ny färdplan för ett uppkopplat och automatiserat vägsystem. Färdplanen har identifierat 20 åtgärder i 4 kluster: Ökad kunskap om automatiseringens effekter (t.ex. tester och demonstrationer), Effektivt utnyttjande av kapacitet (t.ex. MaaS), Hållbart och säkert transportsystem genom digitalisering (t.ex. miljözoner) och Nya planeringsstöd för ökad användbarhet (t.ex. simuleringsmodeller). Nästa steg är att implementera åtgärderna. Suzanne Andersson från Trafikkontoret i Göteborg pratade om några utmaningar som då uppstår för samhällsplanerarna, som att städer utvecklas långsamt och man måste ta hänsyn till kommungränser.

En svårighet är att hitta och välja rätt affärsmodell för nya mobilitetslösningar. Rami Darwish från KTH berättade om ett affärsmodell-labb som man jobbar med inom ITRL ihop med Sustainable Innovation. I en paneldiskussion med Li Höglund från SnappCar, Stina Wärn från Folksam, Ulf Hammarberg från DHL och Mikael Rönnholm från CEVT, ledd av Roland Elander från Sustainable innovation, diskuterades detta. En nyckel är att lyssna till användarna och att vara beredd att göra snabba ändringar. Data från fordon och tjänster är också viktiga informationskällor. Men informationen måste då skyddas från intrång. Även regelverken måste kunna anpassas snabbt, med elsparkcyklar som ett aktuellt exempel. E-handel är ett annat område där affärsmodellerna behöver anpassas att bli både mer hållbara men ändå lönsamma. För industrin behöver affärsmodeller och leverantörskedjor också bli mer öppna att inkludera även lösningar från små entreprenörsföretag. Utvecklingen går både fortare och långsammare, beroende på område, än vad många tror. Man måste alltså jobba både kort- och långsiktigt.

Martin Svensson från AI Innovation of Sweden pratade om AI i det framtida transportsystemet, på komponent-, system- och samhällsnivå. Det finns stora möjligheter men mycket återstår att göra. Mats Nordlund från Zenuityvisade exempel på hur de använder AI och maskininlärning i sin verksamhet.

Joakim Jonsson från Volvo Bussar berättade om arbetet med autonoma stadsbussar som är kopplat till KRABAT-projektet. Man kan inte börja med att köra helt autonomt utan har identifierat 3 möjliga användningsfall: hållplatskörning, busståg och rangering i bussdepå. Se filmen nedan.

Svensk forskning imponerar

Som utlovat så kommer här en sammanställning av relevant svensk forskning. Den är långtifrån heltäckande, dock inte mindre imponerande för det. Den visar på både bredd och djup samt det unika samarbetet som vi har mellan olika aktörer. Stort tack för alla bidrag! // As promised before, here comes a summary of relevant Swedish research. It is far from comprehensive, yet very impressive. It shows both depth and width, and the unique collaborative environment that we have in Sweden. Thanks to all contributors!

Sound design for self-driving cars. The recently started FFI project Sound Interaction in Intelligent Cars explores the role of sound in enhancing user experience during unsupervised autonomous driving. The work focuses on a set of design challenges that could have important effects on people’s willingness to use and buy self-driving cars, including lack of trust in the new technology and increased risk of motion sickness. For instance, the project examines the potential for sound to subtly inform users about upcoming vehicle maneuvers before they actually take place, allowing the users to better anticipate the vehicle’s imminent behavior. In addition to addressing established challenges, the project identifies and examines completely new ways to use sound and meet users’ needs in an environment where they no longer have responsibility as drivers. The work is a collaboration among Volvo Cars, RISE, and the audio production company Pole Position Production and will result in prototypes of complete sound design solutions for self-driving cars. The solutions will be evaluated with users in a VR setting as well as in a real demo car during 2020. For more information contact Fredrik Hagman at Volvo Cars (fredrik.hagman@volvocars.com). 

Adapting new city districts for autonomous vehicles. Halmstad University, together with ten other organisations in seven different countries, has received EU funding for a new research project for the development of smart cities. The project aims to facilitate the planning and development of new city districts so that they are adapted for electric autonomous vehicles. The project is called SUV (Stimulating the Up-take of Shared and Electric Autonomous Vehicles by Local Authorities) and brings together universities, transport organisations and municipalities for a sustainable development of urban environments. Halmstad University will in the project contribute with technologies for connected and collaborative autonomous vehicles. One example of such technology is the communication between vehicles, as well as between vehicles and the infrastructure. The University will also contribute with technical competence in modelling different scenarios with autonomous vehicles. Examples of these scenarios are the traffic flow in cities and how to connect autonomous driving in different environments, such as between a restricted harbour area and the public road network. Varberg municipality is also a project partner. For more information contact Magnus Jonsson (magnus.jonsson@hh.se) at Halmstad University.

System-av-system för effektiv hantering av nödsituationer. HIEM (Holistisk och integrerad nödsituation hantering med hjälp av avancerad teknik och utrustning vid trafikolyckor) är ett Vinnovafinansierat bilateralt projekt med Kina, och SoSER (System av system för effektiva räddningsinsatser och mobilitet i städer) är ett Vinnovafinansierat projekt inom system-av-system för urban mobilitet (SoSSUM). Båda dessa projekt handlar om effektiv hantering av nödsituationer men med olika fokus. I HIEM avser vi utveckla avancerad teknik för hantering av nödsituationer som inkluderar prehospital diagnostik, sjukhusval, navigering av utryckningsfordon, smart infrastrukturanpassning, kontroll av trafikflöden och hantering av trafikstockningar, trådlöskommunikation och systemintegration. I SoSEER fokuserar vi på system-av-system (SoS) och utvecklar SoS metoder för räddningsinsatser, inklusive arkitektur, modellering, simulering och integration.  Tillsammans kommer projekten att leverera ett effektivt system-av-system för räddningsinsatser som förbättrar mobilitet i städer vid trafikolyckor, och bidra till utveckling av framstående kunskapsbas i Sverige och utbildning av specialister inom området system-av-system. Både HEIM och SOSEER involverar fyra forskningsinstanser (Chalmers tekniska högskola: trafikflödesstyrning; RISE: systemintegration; Uppsala universitet: optimal ruttval; och VTI: trafiksäkerhet och nödhantering) och fyra industriaktörer (Medfield Diagnostics AB: utrustning för snabb prehospital diagnostik; H&E Solutions: fordonsutrustning för trådlöskommunikation; WSP AB: Intelligent infrastruktur och tjänsteleverantör; FellowBot AB: platsplanering för nödfordon). Det kinesiska forskarteamet leds av Changjiang Professor Wei Wang som är en av de mest inflytelserika transportforskarna i Kina med över 30 års erfarenhet inom nödhantering. Projekten kommer att pågå i tre år från 2019-04 till 2022-04 och välkomnar intressenter inom räddning och sjukvård att ta kontakt med konsortiet för diskussion och utveckling. För mer information kontakta Xiaobo Qu (xiaobo@chalmers.se) på Chalmers eller Lei Chen (lei.chen@ri.se) på RISE.

Hur upplevs olika körstilar? I slutet av FFI-projektet HaTric (Användargränssnitt för automatiserade fordon) genomförde Design & Human Factors försök på AstaZero med Wizard-of-Oz-bil från Volvo Cars. En Wizard-of-Oz-bil är gjord för att upplevas som helt självkörande, men framförs i verkligheten av en dold testförare i baksätet. Under försöket fick deltagarna uppleva två olika körstilar med fordonet som körde en bana med ett antal vanliga trafiksituationer. Fordonet körde ett varv med en mer offensiv stil och ett varv med en mer defensiv stil. Deltagarna fick skatta tillit i de olika situationerna och de intervjuades om sin uppfattning om hur fordonet uppförde sig och fungerade. Nu har vi analyserat klart resultaten från studien och några intressanta slutsatser är att människors tillit till fordonet påverkas mycket av situationerna, t.ex. om det finns oskyddade trafikanter med i situationen. Det var inte en körstil som upplevdes som mest tillitsskapande i alla situationer, men på det stora hela föredrog deltagarna den mer defensiva stilen. När det gällde deltagarnas förståelse och mentala bild av fordonet så byggde deltagarna tydligt upp en omfattande bild av hur fordonet fungerade och tänkte på baserat den väldigt begränsade input de fick. De tolkade in tekniska funktioner och komponenter, egenskaper, förmågor och till och med personlighet baserat på fordonets körning i de olika situationerna. För mer resultat, håll utkik efter kommande publikationer i Transportation Research Part F och licentiatsseminarier under hösten. Kontaktperson är Lars-Ola Bilgård (lars-ola.bligard@chalmers.se) på Chalmers. 

NPAD (Nätverks-RTK Positionering för Automatiserad Körning) är ett FFI-projekt som löper från maj 2018 till april 2020.Projektets mål är att möjliggöra Nätverks-RTK GNSS-positionering för ett stort antal mobila plattformar genom att tillämpa den standard som utvecklats av 3GPP samt anpassa Lantmäteriets befintliga infrastruktur (SWEPOS). Nätverks-RTK är en GNSS-teknologi som har potential att kunna svara mot krav på kostnad, noggrannhet och tillgänglighet. Denna teknologi bygger på att korrektionsdata från en fast referensstation kan tas emot av GNSS-mottagaren. Dagens distribution av korrektionsdata är inte byggt för en massmarknad av t.ex. automatiserade fordon eller smartphones. 3GPP arbetar nu med standardisering kring hur korrektionsdata skulle kunna distribueras via mobilnätet vilket skulle kunna möjliggöra positionering på cm-nivå för en massmarknad.  Projektet syftar till att sammanställa kravbilden utifrån automatiserade fordon, undersöka hur befintliga system för distribution av korrektionsdata skall anpassas och hur en komplett arkitektur skall se ut för distribution via mobilnätet. En demonstrator skall tas fram för att utföra tester och demonstrera tekniken dels på AstaZero och dels längs utvalda vägsträckor. Testerna skall validera den tekniska lösningen och testa både basstationsbyte och skifte mellan referensstationer.Projektet koordineras av RISE och övriga deltagare är AstaZero, Caliterra, Einride, Ericsson, Lantmäteriet, Scania, AB Volvo och Waysure. För mer information kontakta Stefan Nord (stefan.nord@ri.se) på RISE. 

Positionering på AstaZero. A0REF består av 3st Nätverks-RTK referensstationer monterade på tre olika ställen på testanläggningen AstaZero. Dessa har i samarbete mellan Lantmäteriet, MT och AstaZero placerats på AstaZero för att erbjuda referenspunkter med en noggrannhet på mm-nivå (s.k. ankarpunkter). Dessa kan sedan användas för att mäta in andra objekt på banan eller mätinstrument för att mäta på fordon, t.ex. position och hastighet, med spårbar noggrannhet. För mer information kontakta Stefan Nord (stefan.nord@ri.se) på RISE. 

Implementering av självkörande bilar: Överblick av problem och möjligheter avseende samhälleliga och etiska aspekter är ett projekt vid Institutet för Framtidsstudier i samarbete med KTH, som löper under delar av 2019 och 2020 inom ramen för Trafikverkets forskningsprogram ”Vision Zero Academy”. Som projekttiteln antyder är målet med projektet är att analysera etiska och samhälleliga aspekter avseende implementeringen av självkörande fordon. Projektet syftar å ena sidan att ge en bred överblick över vilka etiska frågor som förtjänar att belysas ytterligare. Å andra sidan kommer projektet bidra till att genomföra två djupare analyser av två sådana frågor. Först kommer vi analysera etiska maskinbeslut med avseende på självkörande fordon. Sedan kommer vi att analysera ansvarsfrågor rörande informationsflöden och människors personliga integritet. För mer information besök projektets websida eller kontakta Björn Lundgren (bjorn.lundgren@iffs.se) på Institutet för Framtidsstudier. 

Human Interaction with Automated Vehicles in Cities. This topic will be addressed in a new EU-project called Supporting the interaction of Humans and Automated vehicles: Preparing for the Environment of Tomorrow (SHAPE-IT) that will start in October 2019 and be coordinated by Chalmers. The main objective of SHAPE-IT is to facilitate safe, acceptable (and, ideally, desirable) integration of user-centred and transparent AVs into tomorrow’s mixed urban traffic environments, using both existing and new research methods, designing advanced interfaces and control strategies. This project spans three complementary facets of AV/human factors research: 1) understanding the behaviour of different road-users (inside and outside AVs) when interacting with AVs, investigating cognitive processes, predictability, trust, acceptance and safe interaction following an initial, and long-term exposure to AVs; 2) researching design strategies for the interfaces used for communication and interaction between AVs and humans (inside and outside AVs), and 3) integrating knowledge on human/AV interactions into models to perform prospective mixed traffic-AV safety assessments. As Artificial Intelligence (AI) is a core technology for AV development, in this project, we will also seek to integrate knowledge of human factors with that of AI in AV development, reducing the gap between human-factors and AI scientists, and AV software developers. Fifteen PhD-students will be performing research in the project (the recruitment is ongoing), together with their academic and industrial supervisors. For more information visit the project website or contact Jonas Bärgman (jonas.bargman@chalmers.se) at Chalmers.

Kunskapsunderlag om uppkopplade, samverkande och automatiserade fordon, farkoster och system. Under våren har Trafikanalys haft regeringens uppdrag att ta fram ett trafikslagsövergripande kunskapsunderlag som belyser utmaningar och möjligheter med uppkopplade, samverkande och automatiserade fordon, farkoster och system. Nu har detta publicerats i en rapport som hittas här. Där konstateras bland annat att utvecklingen kommer att ha störst påverkan på vägtrafiken, dels för att denna delsektor är ekonomisk störst och dels för att nyttorna blir mest påtagliga där. Det finns också risk för negativa effekter, som exempelvis risk för ökad vägtrafik som kan motverka de positiva effekterna och bidra till ett mer utspritt boendemönster och försämra underlaget för kollektivtrafik. Delat resande kommer att bli mycket viktigt för att lyckas begränsa den förväntade trafikökningen i urbana miljöer. Vidare konstateras det att utvecklingen rymmer också en rad potentiella målkonflikter; mellan ett kostnadseffektivt och integrerat transportsystem respektive samhällets sårbarhet för extrema risker, mellan enkel och effektiv datakommunikation respektive datasäkerhet, och mellan en storskalig tillgång till data för verksamhetssamordning respektive integritetsrisker. En rekommendation från studien är att det nationella ansvaret för riskhantering klarläggs och att resurser sätts av. Beaktat de osäkerheter som finns om den framtida utvecklingen konstateras att en bred palett av styrmedel kommer att behöva analyseras inför framtiden. För mer information kontakta Lennart Thörn (lennart.thorn@trafa.se) på Trafikanalys. 

Autobike – självkörande cykel. Syftet med studentprojektet Autobike är att utveckla en självkörande cykel som ska användas i testmiljöer för autonoma bilar. Innan autonoma bilar lanseras på marknaden testas de i testmiljöer för att säkerställa att de fungerar som de ska och till exempel kan väja för en cyklist som dyker upp helt oväntat.  Projektet sker i samverkan mellan Mälardalens högskola, Chalmers, AstaZero, Cycleurope och Volvo Cars. Under hösten och våren har studenterna arbetat med alltifrån val av cykel och utvecklingen av elektroniken, mjukvaran, programmeringen och mekaniken, till implementering av kontrollsystemet och testning av cykeln. Att få cykeln att balansera var inte det enklaste. Utvecklingen fortsätter efter sommaren. Här och här hittas mer information. 

V-Com. It is a precautionary system that communicates safety-critical information between truck drivers and vulnerable road users that was presented by six final year MSc students from Blekinge Institute of Technology and Stanford University together with Volvo Group Connected Solutions and its Silicon Valley based Innovation Lab Hub at this year’s Stanford EXPE – design experience. In Stanford’s capstone project, ME310, which runs from October to June, they move in a Design Thinking process through phases of needfinding, ideation, prototyping and more to arrive at a final detail designed product to display at the final exhibition, the EXPE. V-Com is a system of sensing, computation and communication components that the students mounted as an add-on on a truck. For more information visit this site or contact Jenny Elfsberg (jenny.elfsberg@volvo.com) at Innovation Lab Hub US at Volvo Group.