Etikettarkiv: Combitech

Guldkorn från svensk forskning

Det här är svenska guldkorn från er läsare. Tack för ert fantastiska jobb.

Eldsjäl: Elektriska delade självkörande fordon i det framtida fossiloberoende transportsystemet
Trafikkontoret i Göteborg, Västtrafik, K2/Malmö Universitet och Trivector har genomfört Drive Sweden-projektet Eldsjäl. Projektet analyserade hur delade självkörande elektriska fordon kan komma att påverka staden och transportsystemet i Göteborgsregionen. Det syftade till att skapa en ökad förståelse för hur elektriska delade självkörande fordon kan påverka och komplettera kollektivtrafiken men också hur transportsystemet i stort påverkas utifrån ett hållbarhetsperspektiv. I projektet utvecklades möjliga framtidsscenarier vilka sedan modellerades i Göteborg Stads nya multimodala VISUM-modell. Från scenarierna erhölls resultat i form av hur trafiken påverkas och parametrar såsom restider, trafikflöden, fordonsflotta och beläggning i fordonen. I projektet genomfördes också digitala djupintervjuer för att få en bättre förståelse för människors inställning, resonemang och behov kring självkörande fordon i staden i allmänt och kring simuleringsresultaten i synnerhet. Mer information om projektet hittar du här eller kontakta Lennart Persson, Trivector, (lennart.persson@trivector.se)

Will leisure trips be more affected than work trips by autonomous technology? Modelling self-driving public transport and cars in Stockholm, Sweden
I studien användes den svenska transportmodellen Sampers för att undersöka vad självkörande fordon skulle innebära för Stockholm, genom en av de första modellstudierna där överflyttning mellan trafikslag ingår. En överflyttning från gång- och cykeltrafik hittades i samtliga scenarier, framförallt till biltrafik men i mindre mån skulle även självkörande teknik för kollektivtrafik innebära att människor åkte kollektivtrafik istället för att gå eller cykla. Nytt var även att vi undersökte geografiska skillnader och kom fram till störst effekter i förorter till Stockholm – med motiveringen att förbättringen av tillgängligheten för kollektivtrafik och bilar i innerstaden relativt sett skulle vara mindre. På samma sätt har de flesta redan bil på landsbygden och avstånden är långa, vilket ger få överflyttningseffekter. Där kan däremot anropsstyrd kollektivtrafik vara ett bra alternativ till bilen. Därutöver, som titeln antyder, undersökte resors olika syften och såg små effekter för transportsystemet för arbetspendling. Istället är det på fritiden som den stora ökningen av tillgänglighet får effekten att människor helt enkelt göra fler resor. Ni kan läsa den vetenskapliga artikeln här. Kontaktperson Erik Almlöf (ealmlof@kth.se)

Frameworks for assessing societal impacts of automated driving technology
I studien gjordes en översikt av de olika ramverk som finns för att utvärdera effekterna av självkörande teknik. Det identifierades 13 tidigare ramverk med ambitionen att täcka mer än ett område (t ex så försvann då ramverk som bara tittade på säkerhetsaspekter) och val av både metod och redovisade områden varierade stort. Det konstaterades att inget av de identifierade ramverken täcker allt, istället har olika ramverk olika styrkor. Därtill användes Trafikverkets metod för samhällsekonomiska bedömningar för att utvärdera en föreslagen autonom busslinje i södra Stockholm och det kunde konstateras att projektet skulle kunna ge stora, och lite oväntade, vinster i form av framförallt bekvämare resor för resenärer, medan t ex olyckor var en relativt marginell faktor. Samtidigt så täcker inte den nuvarande metoden för samhällsekonomiska bedömningar alla aspekter av effekter av självkörande teknik, t ex ökad arbetslöshet, då metoden främst används för infrastrukturåtgärder. Den vetenskapliga artikeln hittas här. Kontaktperson Erik Almlöf (ealmlof@kth.se)

5GCroCo – FIFTH GENERATION CROSS-BORDER CONTROL, a project funded by EU H2020 program
The 5GCroCo project has carried out large-scale connected car trials along two 5G corridors that cross the borders between France-Germany and Luxembourg-Germany. The trials carried out in these corridor areas proved that seamless service continuity on 5G networks can be guaranteed across borders. The service continuity solution implemented in 5GCroCo is achieved through a cross-border (and cross-MNO) handover, which results in an almost imperceptible service interruption time of around 120 ms. The seamless service continuity is important for all of the three use case that were demonstrated: Tele Operated Driving (VW); HD mapping (Volvo Cars); and Anticipated Cooperative Collision Avoidance (PSA and Renault). In today’s mobile networks, the connection breaks and needs to be re-established, which took more than 6 seconds with the devices used in the conducted trials. In all cases the service interruption time is significantly reduced compared to tens of seconds, or even minutes, experienced today when you are crossing a country border. The handover solution implemented in 5GCroCo is thus essential to enable continuous driving experiences between 5G national networks when connected and autonomous vehicles cross from one country to another. In addition to the large-scale trails, tests have been performed at AstaZero, using the 5G network from Ericsson, where a virtual country border was emulated on the rural road test track. 5GCroCo consortium in short: 24 partners from 7 European Countries, Total project budget about 17M€, EC contribution about 13M€, Project duration: 44 Months, 3 CAM key use cases demonstrated. Ni kan läsa mer på länken här. Kontaktperson Mikael Nilsson (mikael.nilsson@volvocars.com)

Assuring Safety for Rapid and Continuous Deployment for autonomous driving (ASSERTED)
Assuring safety of ML-enabled systems like Autonomous Driving (AD) Function in DevOps context is the challenge which will be addressed in ASSERTED. Our research goal is to explore methods and technical solutions for coping better with safety of autonomously driving vehicles for rapid and continuous development and deployment. The project is a collaboration between Volvo Cars, Zenseact, and Chalmers. ASSERTED is funded by Sweden’s Innovation Agency (Diarienummer: 2021-02585), and supported by WASP. https://youtu.be/YRlSpd6NIm8 Contact person Ali Nouri (ali.nouri@volvocars.com)

Digital trafiksäkerhetslösning: en förstudie
En förstudie som ämnar öka förståelsen och möjligheterna för en kostnadseffektiv och robust-över-tid digital trafiksäkerhetslösning som automatiskt varnar för annalkande trafik i obevakade plankorsningar håller nu på att avslutas. Förstudien har koordinerats av RISE tillsammans med företaget Crossing Safety och syftet är att risken för plankorsningsolyckor, samt kostnader för plankorsningsåtgärder, ska kunna reduceras. Ett ”proof-of-concept” utfördes den andra december med en utvecklad mobil-app som varnar för tåg då man befinner sig inom ett visst förutbestämt område från en obevakad plankorsning. Slutrapport publiceras i januari. https://youtu.be/YErx4DjlfyM. Kontaktperson Joakim Rosell (joakim.rosell@ri.se)

AUTOPIA – successful operation in Nordic winter conditions
From April 2021 until January 2022, Ruter and the AUTOPIA partnership trialed a service of AV transport in Ski, Norway. As a feeding shuttle to Ski train station, the pilot project aimed to demonstrate the benefits of a fleet of ride-shared AVs as an integrated part of public transport. Retrofitted Toyota Proaces with Sensible4’s AV technology were used in a publicly open service driving more than 10.000 kilometers through all seasons. Among others, the project resulted in new methodology for site/vehicle matching, experience with key issues of winter operation, and demonstrated that AVs can handle Nordic winter conditions successfully. All learning reports, videos and more can be found here: https://ruter.no/automated-mobility AUTOPIA consisted of the Nordic partners Ruter, Holo, Norwegian Public Road Administration, Viken municipality, TØI and Sensible4 as well as Toyota Motor Europe. Several others were involved in the project, including Edeva from Sweden. eirik.mero@ruter.no Eirik Mero

Augmented CCAM
Augmented CCAM (https://www.augmentedccam.com/) är ett HEU-projekt (https://www.ccam.eu/projects/augmented-ccam/) som syftar till att förstå, harmonisera och utvärdera olika lösningar i den fysiska och digitala infrastrukturen (så kallade PDI-koncept – Physical and Digital Infrastructure) för att förenkla och förbättra storskaligt införande av självkörande fordon. Det kan t.ex. handla om hjälp för att detektera oskyddade trafikanter eller vägarbetspersonal, interaktion med utryckningsfordon eller vävningssituationer. Projektet koordineras av FEHRL och konsortiet består av 26 parter från 13 länder. Från Sverige deltar VTI med körsimulatorförsök som syftar till att undersöka trafikanters interaktioner med något eller några av de framtagna PDI-koncepten samt genomföra trafiksimuleringsexperiment för att skala upp effekter, från studier av enskilda fordon och trafikanter i körsimulator eller digitala tvillingar, till ett trafiksystem med olika andel fordon eller trafikanter som kan utnyttja PDI-koncepten. Johan Olstam (johan.olstam@vti.se)

I4Driving
HEU-Projektet i4Driving (https://i4driving.eu/) syftar till att lägga grunden för en ny standardmetod för utvärdering av säkerhet hos självkörande fordon genom att ta fram en trovärdig och realistisk säkerhetsreferensnivå (hur säkert en mänsklig förare kör i en given situation). Detta dels genom att ta fram ett modulärt och skalbart bibliotek av förarmodeller för simulering och dels genom en metodik för att beakta den stora variationen och osäkerheten i mänskligt förarbeteende i olika situationer. Projektet koordineras av Panteia och konsortiet består av 14 parter samt 3 parter från USA, Australien och Kina. Från Sverige deltar VTI som kommer att bidra med kunskaper kring föraruppmärksamhet, förarmodellering och med körsimulatorförsök i syfte att fånga variation i förarbeteende i olika situationer. VTI kommer också genomföra en variant på Turing-test där tanken är att undersöka om mänskliga förare kan särskilja förarbeteende från den utvecklade förarmodellen från en verklig förare. Kontaktperson Johan Olstam (johan.olstam@vti.se)

GLAD, Godsleverans under den sista milen med självkörande fordon är ett nyligen avslutat projekt som delfinansierats av Trafikverket och utförts av RISE, Clean Motion, Combitech och Aptiv. I projektet undersöktes vilka områden som s.k. Autonomous Delivery Vehicles (ADV) kan användas och vilka utmaningar som måste hanteras vid implementering av sådana fordon för sista-milen leveranser. Man undersökte också interaktioner mellan ADV:er och andra trafikanter, och operatörer som interagerar med ADV:er i terminalmiljö. Flera av studierna utfördes med hjälp av ADV-prototyper som utvecklades under projektet. Prototypen med självkörande funktioner hade ett autonomt transporthanteringssystem (eng. Autonomous Transport Management System, ATMS) som placerades i en molntjänst med kapabilitet för fjärrkontroll. Projektet undersökte även legala aspekter av ADV:er, med fokus på hur de kan klassificeras. Beroende på ADV:ns maxhastighet och lastkapacitet skulle denna typ av fordon kunna klassificeras som antingen 4-hjulig tung motorcykel för godstransport, eller som motorverktyg. Det förstnämnda kan innebära längre väg till marknadsintroduktion p.g.a högre säkerhetskrav. Resultaten från studierna om interaktioner mellan människor och ADV:er visade bl.a att fordonets körbeteende hade en betydande roll i att förmedla fordonets beteende och avsikt att lämna/inte lämna företräde, samt att ljussignaler på fordonet (e-HMI) kan bidra till att lättare förstå fordonets beteende. En studie som gjordes i en simulerad terminalmiljö visade även att kontexten d.v.s terminalscenariot, situationerna och arbetsuppgifterna var viktig för deltagarna att förstå innebörden av fordonets eHMI. Kontaktperson: Mikael Söderman (mikael.soderman@ri.se)

Digital traffic rules for a connected and automated road transport system. Within the framework of Drive Sweden Policy Lab 2021/22, ways towards a future system for digital traffic rules were identified. Sweden has, from an international perspective, come a long way but there are challenges that can only be solved with a common approach. The project gathered relevant actors to understand how the conditions for change look like, as well as how a change would be received by all relevant actors. Actors ranging from those who issue local traffic rules to those who benefit from the information being presented in a machine-readable format (e.g. navigation service providers, vehicle manufacturers, road users etc.). Reliable information is needed already today for various applications and supporting IT systems and will become increasingly important with a connected and automated road transport system. The project Drive Sweden Policy Lab 2021/22 is funded through the strategic innovation program Drive Sweden by Vinnova, Formas and the Swedish Energy Agency. Join our final digital event (in Swedish) and register via Drive Sweden. Contact persons Cilli Sobiech (cilli.sobiech@ri.se) & Jenny Lundahl (jenny.lundahl@ri.se).

Independent assessment in trials with automated vehicles. The Swedish Transport Agency’s regulations and general advice on trials with autonomous vehicles have recently been amended (TSFS 2021:4, last amended by TSFS 2022:82). If the application concerns trials where technical systems are used to a large extent to ensure road safety, the risk assessment in the application should be supplemented with a statement from an independent assessor who examines that the system can ensure road safety. However, there is no further guidance on when an assessment is needed and what it should cover. RISE is gathering relevant vehicle manufacturers, vehicle operators, assessors, and authorities to clarify and harmonize what an independent assessment of road safety should cover, how the new general advice can be applied in practice and what experiences we can build upon for independent assessment and application processes from other countries and transport areas. If you are interested in participating contact Cilli Sobiech at RISE (cilli.sobiech@ri.se) & Jenny Lundahl (jenny.lundahl@ri.se).

Co-opetitive systems of systems for mobility.
In the recently finished research projects Maus and Orm, foundational aspects of co-opetitive systems of systems for future mobility systems have been explored. A co-opetitive system of systems consists of several independently managed and operated constituent systems that are both collaborating in constellations that solve user needs and competing for business. The projects have developed research results in architecture and design, value network flow analysis, governance, decision-making, and policy analysis. The projects are joint work between RISE, AFRY, Volvo Cars, and (for Orm) Trollhättans stad, and have received funding from Vinnova. More information, including one introductory and one visionary movie about the results, can be found at http://www.sos-4-mobility.se/ or by contacting Pontus Svenson (pontus.svenson@ri.se).

Skara Skyddsängel – Infrastrukturtjänster on-demand för säkrare, tryggare och bekvämare aktiv mobilitet
För säkert cyklande i mörka nordiska miljöer krävs ljus. Forskningsprojektet Skara skyddsängel arbetar för att utveckla och testa autonoma drönare som ett alternativt sätt att lysa upp mörka cykelvägar i Skara kommun. Projektet koordineras av RISE med partner Högskolan i Skövde, Jönköpings Universitet och Skara Kommun.  Det övergripande syftet med projektet är att belysa såväl cykelvägar som möjligheter för människor att välja ett hälsosamt, hållbart och kostnadseffektivt resande. Som en del av projektet har fokusgrupp studier utfört i juni med VR och pilotförsök hållits i november på de utvalda cykelvägarna. Tillsammans med testet har intervjuer gjorts för att undersöka människors nuvarande resvanor och förstå mer om känslan av säkerhet i relation till bland annat mörker och om drönarbelysningen kan bidra till att underlätta hållbart resande. I början av 2023 genomför projektet ytterligare en pilotstudie med utökat testmöjligheter. De som bor i Skara som är intresserad är välkomna att anmäla med länken https://forms.office.com/r/eNjgYcfF7M. Ni kan läsa mer om projektet här. Kontaktperson: Lei Chen (lei.chen@ri.se)

DiG Drönarleverans i Glesbygd
Leverans av paket och gods på svensk landsbygd är utmanande med längre leveranstid och transportutsläpp, särskilt i skärgårdsområden där vattentransporter behövs. Klimatförändringarna är en akut fråga som kräver att vi gör allt för att hitta motlösningar, samtidigt driver näthandeln behovet av logistik till en ny tidshöjd. DiG är ett Vinnova-finansierad projekt med syftet att undersöka det senaste inom drönarleverans med anpassningar till svenska landsbygdsegenskaper för att minska utsläppen, öka servicejämlikheten och tillgänglighet. Projektet koordineras av RISE med samarbeten mellan Aerit – den svenska drönarleverans startuppen, ICAx – innovationsgruppen på ICA Gruppen och Norrtälje kommun, med stöd från ICA Nära Gräddö och Öbutiken i Tjocke. Genom året har projektet utvecklat och testat autonoma drönarleveranssystem och integrerat med ICA Pronto appen. Nu i december pågår pilot i Norrtälje och de utvalda kunderna kommer kunna beställa vissa varor med drönare som ett leverans alternativ. Ni kan läsa mer om projektet här. Kontaktperson: Lei Chen (lei.chen@ri.se)

Guldkorn från svensk forskning

Det här är svenska guldkorn från er läsare. Tack för ert fantastiska jobb.

Autonoma leveransfordon i interaktion. Inom projektet GLAD (Goods deliveries under the LAst mile with autonomous Driving vehicles) genomfördes under maj månad en användarstudie där en ADV (Automated Delivery Vehicle) utrustad med s.k. eHMI:er (visuella medel som kommunicerar till människor i omgivningen) körde en kortare rutt. Syftet var att utvärdera hur individer uppfattade och förstod eHMI:erna i olika situationer, samt hur de kan utvecklas. Preliminära resultat indikerar att eHMI:erna i sig inte kommunicerade sina specifika budskap, men att de i sina givna sammanhang blev begripliga. Resultaten visade även på tydliga inlärningseffekter, d.v.s. deltagarna lärde sig snabbt eHMI:ernas budskap. Projektet är finansierad av Trafikverket och utförs av RISE, Clean Motion, Aptiv, Combitech och Högskolan i Halmstad. Kontakt: Mikael Söderman, RISE, (mikael.soderman@ri.se)

Förstudie SMART-projektet. Som en del av det EU-finansierade SMART-projektet genomför RISE en förstudie kring förutsättningarna för att komplettera kollektivtrafiken med förarlösa tjänster i Skaraborg. Projektet leds av Destination Läckö/Kinnekulle som är ett kommunalt bolag ägt av Götene och Lidköping. Preliminära resultat visar att det i några av tätorterna finns intressanta systemeffekter värda att studera närmare men att det är svårt att hitta lämpliga lösningar för lite längre avstånd mellan kollektivtrafikens hållplatser och populära utflyktsmål eller uppför Kinnekulles de branta vägar. Det finns också sträckor i området där det antagligen finns en marknad för kommersiella tjänster med manuellt framförda fordon. Kontakt: Håkan Burden, RISE, (hakan.burden@ri.se)

Generering av dimma och väderklassificering. RISE och Veoneer har under våren 2022 genomfört en förstudie ”Dimhöljt” för lära hur dimma kan skapas i klimatkammare. Syftet med den genererade dimman är att testa lidar, t ex för att filtrera bort störningar, för att validera simuleringsmodeller, för att verifiera sensorprestanda eller för att verifiera att en funktion är inom ODD. Det finns i princip tre olika sätt att slå sönder vatten till fina droppar: med vibrationer, med trycksatt vatten eller med tryckluft; man kan även generera dimma genom att kondensera ånga. Dimma är våta aerosoler i storleksordning från våglängden av synligt ljus till en faktor 20-50 ggr större. Projektet har också undersökt hur mätning av dimmans karaktäristik utförs på lämpligt sätt. Mätningar måste bland annat inkludera storleksfördelning av partiklar och mängden vatten i flytande form. Det är viktigt att skapa repeterbart testsystem med dimma. I projektet studerades därtill hur man med en lidar kan klassificera vädertyper såsom dimma, regn, snö, klart väder. Studien baserades på mätningar utomhus och i klimatkammare. De inledande försöken har varit framgångsrika och tanken är att förstudien ”Dimhöljt” följs av en fördjupad ansats. Förstudien delfinansierades av Vinnova/FFI, 2021-02582. Kontakt: Martin Sanfridson, RISE, (martin.sanfridson@ri.se)

Autonoma fordon för blinda, döva och dövblinda. I en nyligen publicerad journalartikel vid namn ”Vibrotactile guidance for trips with autonomous vehicles for persons with blindness, deafblindness, and deafness” presenteras resultat från Drive Sweden projektet ”Guidning till autonoma fordon för blinda, döva och dövblinda”. Studien visar bland annat på vikten av att beakta användarperspektivet för hela resan, inte bara fordonet i sig. Artikeln finns att läsa här. Kontaktperson Jonas Andersson (jonas.andersson@ri.se)

Best student paper på IEEE konferens. Vid konferensen IEEE Intelligent Vehicles Symposium vann doktoranden José Manuel Gaspar Sánchez och industridoktoranden Truls Nyberg från KTH och Scania första pris i kategorin ”Best student paper” med artikeln ”Foresee the Unseen: Sequential Reasoning about Hidden Obstacles for Safe Driving”. I samarbete mellan KTH och Scania har studenterna utarbetat en algoritm för autonoma fordon för att hantera skymda trafikanter på ett säkert och effektivt sätt. Forskningen har finansierats genom Vinnovas center TeCOSA och forskningsprogrammet WASP.
Andra pris i kategorin gick till industridoktoranden Magnus Gyllenhammar vid KTH och Zenseact för artikeln ”Uncertainty Aware Data Driven Precautionary Safety for Automated Driving Systems Considering Perception Failures and Event Exposure”, också den finansierad genom WASP. Kontaktperson Truls Nyberg (truls.nyberg@scania.com)  & Magnus Gyllenhammar (gyllenhammar@zenseact.com). 

Syntetisk data för validering. En vanlig utmaning inom maskininlärning är att ta fram realistisk data både för att träna sina nätverk samt för att validera dem. I dag är en vanlig metod att samla in data i den miljö där nätverket ska appliceras, t.ex. i trafiken, och sedan hoppas att det resulterande datasetet ska vara representativt. Detta är tyvärr sällan fallet eftersom att det är svårt att få med alla tänkbara scenarion. Inom FFI-projektet DIFFUSE utvecklas metoder för att skapa syntetisk data och bilder primärt för valideringssyften. Tanken är att förbättra de maskininlärningsmetoder som i dagsläget bara i begränsad omfattning ger kontroll över vad den resulterande bilden innehåller. Kontaktperson Martin Torstensson (martin.torstensson@ri.se)

Future mobility services in Ride the future-project. Ride the future is a multi-brand pilot where 8 partners join forces in running three autonomous buses along a 4 km route in Linköping’s Valla district. The partners are VTI, Linköping University, Linköping Science Park, Transdev Sweden AB, Östgötatrafiken, Linköpings kommun, Akademiska Hus and RISE. The area includes residential housing, businesses and the campus of Linköping University (LiU). 
Ride the future is furthermore one of the sites in the larger Horizon 2020-project called SHOW (SHared automation Operating models for Worldwide adoption), and a platform for several projects related to future mobility solutions. To date over 20 studies and research projects – completed and ongoing – are related to Ride the Future. A result conference was held 26 April and presented findings about the following topics:

  • Lessons learned from setting up a demonstration site with autonomous shuttle operation; paper (funding: SHOW)
  • Mobility for all – but who is ”all”?  paper (funding: Drive Sweden)
  • 5 feasibility studies (funded by VTI and summarised in here) about
    • Towards a digital twin of campus Valla for co-simulation of road users 
    • Exploring spatio-temporal accessibility in Lambohov: a pre-study. 
    • Data processing and visualization of mobile air quality measurements. 
    • Road surface unevenness and its impact on comfort and vibrations in low speed vehicles
    • Infrastructure needs at bus stops. 
  • The following studies were also presented at the conference. (funding in brackets):
    • Säkerhetsförarens uppmärksamhet och vakenhet (FFI)
    • The digital infrastructure of ELIN’s data collection (SHOW=EU)
    • Automated Vehicles as Social Agents: A Research Agenda (ELLIIT)
    • Cybersecurity of autonomous vehicles (Drive Sweden)
    • Digital guidance in public transport (funding: ERA-net)
    • Children’s perspective on future travels by autonomous bus (SHOW)
    • Autonomous shuttles for all – Experiences from children with intellectual disability (WASP-HS)
    • Game engine simulation of autonomous buses in a student project (LiU)
    • Ljudsignaler i interaktion mellan autonoma bussar och oskyddade trafikanter (LiU)
    • For more information and contact to project leaders, please get in touch with Ingrid Skogsmo (ingrid.skogsmo@vti.se)

Säkerhetskultur för automatiserade fordon. Målet för projektet Säkerhetskultur för automatiserade fordon är att utveckla metoder och verktyg för att kunna hantera säkerhetskulturen i organisationer som konstruerar och implementerar automatiserade fordon och maskiner. Projektet kommer att utforska befintlig säkerhetskultur och nya risker, samt utveckla mätinstrument för säkerhetskultur och pröva hur de kan appliceras på hållbarhet- och jämställdhetskultur. Säkerhetsfokus har länge legat på fordon och förare. Nu behövs organisationens och kundens betydelse lyftas fram. I projektet kommer därför en modell och verktyg utarbetas för att integrera säkerhetskultur i utvecklingsarbetet och för att stötta en lärandeprocess. Modellen utvecklas och utvärderas på två fallstudier från olika domäner, dels autonoma truckar samt automatiserade bussar i projektet Ride the future. En viktig aspekt av projektet är kunskaps och metodiköverföring mellan de olika tillämpningarna och mellan parterna VTI, RISE, Volvo GTT, Combitech och Toyota material handling. Projektet finansieras av Vinnovas FFI-program och genomförs på två år under ledning av VTI. Kontaktperson: Christina Stave (christina.stave@vti.se).

Studie om lastbil-VRU interaktioner inom FFI-projekt. Inom ramarna för FFI-finansierade projektet ”Externa interaktionsprinciper för förtroende och acceptans av tunga autonoma fordon” som bedrivs av Scania, RISE och Högskolan i Halmstad har doktoranden Victor Fabricius och kollegor publicerat en vetenskaplig tidskriftsartikel ”Interactions Between Heavy Trucks and Vulnerable Road Users—A Systematic Review to Inform the Interactive Capabilities of Highly Automated Trucks”. Artikeln syftar till att ge en översikt av den vetenskapliga litteraturen gällande dagens interaktioner mellan tunga lastbilar och oskyddade trafikanter – mer specifikt fotgängare och cyklister. En av insikterna från studien är att en stor del av interaktionen består av implicit kommunikation som till exempel fordons körsätt och rörelsemönster, och att den här typen av kommunikation i framtiden troligtvis kommer utgöra grunden även för interaktioner med automatiserade fordon. En annan insikt från studien är också att explicit kommunikation, i form av exempelvis ljussignaler på lastbilen i syfte att förtydliga lastbilens avsikter och handlingar, kan vara till nytta för interaktionerna. Utformning och nyttan av sådan kommunikation undersöks vidare i projektet som pågår fram till mitten av oktober 2022. Kontaktpersoner: Yanqing Zhang (yanqing.zhang@scania.com) och Daban Rizgary (daban.rizgary@ri.se)

Autonomous vehicle interactions in the hub. Scania, RISE, Boliden and Icemakers are working together in a research project “In the Hub – Samspel mellan operatörer och förarlösa fordon i framtidens transportsystem” funded by FFI. The aim is to investigate how natural interaction technologies can be integrated into autonomous transport systems to facilitate efficient and engaging experience in the hub contexts. An exploratory study have examined the potential of using verbal interaction and augmented reality (AR) to facilitate collaborations between professional human operators and unmanned self-driving heavy vehicles. Concepts that support operators in loading situations were designed and evaluated with forklift operators and rock-loading operators during a video-based study. Overall, the concepts received high scores in perceived efficiency and user experience. The results from the forklift operators supported the idea that more natural and social verbal interaction between operators and unmanned vehicles could lead to increased trust and acceptance compared to using simple voice commands. However, the results from the rock-loading operators showed that extensive use of voice interaction could become disturbing. The exploratory study thus supports the potential of using and further exploring verbal interaction and AR to facilitate human operators’ collaboration with self-driving vehicles, and the proposed concepts provide promising examples of interaction models for further investigation and implementation. The results have been presented in a paper which will be published in the conference “Applied Human Factors and Ergonomics” this year. Contact person: Yanqing Zhang (yanqing.zhang@scania.com) and Johan Fagerlönn (johan.fagerlonn@ri.se)

Heavy Automated Vehicle Operation Center (HAVOC) – Requirements and HMI design is a recently completed FFI-funded research project conducted by RISE and Scania with the following final project summary: Development trends suggest that, in spite of the optimistic announcements made by some stakeholders a few years ago, there are still technological challenges and regulatory constraints making heavy automated vehicles (HAVs) dependent on human control. Indeed, most HAV still require a human safety operator in the vehicle, and automated driving without a human “fallback” might be distant. At the same time, having a human safety operator in the vehicle jeopardises major anticipated benefits of HAVs – transport safety and efficiency. To bridge this gap, stakeholders are exploring remote operation technology, which enables HAV to be remotely operated by a human operator to some extent. The purpose of the HAVOC project was to study operator work and HMI for remote monitoring and control of heavy autonomous vehicles. The aim was to answer the following research questions:

  • What requirements are imposed on people and heavy vehicles for assessment, assistance, and driving?
  • What is required to scale the ratio between the number of operators and the number of monitored vehicles?
  • How should operator work be designed for transitions between assessment, assistance, and driving?
    A simulator was developed in Unity game engine with corresponding 3D-world and operator HMI to enable exploration of remote operation of ten vehicles in parallel. In a user study, 15 participants were invited to work for 1.5 hours and evaluate the system and work in terms of human-automation interaction. Human factors and HMI requirements were elicited for remote assessment, remote assistance, and remote driving operator tasks. The results show the importance of taking a systems perspective in developing and implementing remote operation control centers. See this link for an overview of the study and its results.
  • One of the major takeaways from the user study and the HAVOC project is the importance of a systems perspective in the analysis and design of future remote operation centers. The answer to questions such as “How many operators are needed?, How many vehicles can be monitored and controlled?, What is the best HMI?, What are the most important operator tasks?”  etc., will always rely on the dependencies between multiple human, technical and organizational factors. The ability to deal with the dependencies between factors such as operators’ skills and knowledge, operator tasks and training, HMI, vehicle capabilities, operational context, etc., lies in defining the envisioned work system and deciding what to design for. If a viable business case for remote operation is an operator:vehicle ratio of 1:1, 1:10 or 1:100 will place very different demands on overall human-automation systems design and work organisation. In this project, we have only considered single operator work. In a real application, teamwork between remote operators, traffic planners, and field personnel can be expected, further stressing the socio-technical systems approach. Contact person: Jonas Andersson (Jonas.andersson@ri.se)

Autonomt leveransfordon på Nordstans tak

Det svenska forskningsprojektet GLAD (Goods delivery under the Last mile with Autonomous Driving vehicles) där RISE, Aptiv, Clean Motion, Combitech och Högskolan i Halmstad undersöker interaktionen mellan autonoma leveransfordon och andra trafikanter har nu utfört tester med fotgängare på Nordstans tak [1].

Projektets fokus är på acceptans och tillit till sådana fordon, men berör också andra aspekter så som den självkörande tekniken, metodik för utvärdering av externa gränssnitt på autonoma fordon, affärsmodeller samt digital och fysisk infrastruktur.

Projektet som är finansierat av Trafikverket påbörjades i mars 2019 och är planerat att avslutas i augusti 2021.

Källa

[1] RISE. News Cision. Test med självkörande fordon och fotgängare på Nordstans tak. 2021-06-30 Länk

Guldkorn från svensk forskning

Dessa guldkorn är bidrag från våra läsare – stort tack för det, och för all fantastisk forskning och utveckling som ni gör. Keep up the good work!

iQ-Pilot & iQ-Mobility. These are two recently finished projects co-funded by the Strategic vehicle research and innovation programme (FFI). The focus of the projects was development of new technology to realize flexible, energy-efficient transport solutions in cities. Several proof-of-concept prototypes have been developed and demonstrated, including autonomous buses and a smart coordination system for bus fleets. The research results were presented in a webinar earlier this week. These results are the joint efforts of Scania, Ericsson, INIT, Veoneer, Royal Institute of Technology (KTH) and Örebro University. 

Human interaction with autonomous minibuses. Tom Ziemke’s research group at Linköping University, in collaboration with researchers at VTI, will during the autumn start a new research project on people’s interaction with autonomous minibuses on campus. The research will focus on method development and empirical studies of how pedestrians, bicyclists and car drivers interact with the buses. A two-year postdoc position is available via this link (application deadline: August 5). For more information contact Tom Ziemke (tom.ziemke@liu.se).

GLAD – Goods delivery under the Last mile with Autonomous Driving vehicles. Small autonomous electric delivery vehicles (ADV) are expected to transform transportation of goods under the first and last mile. The advantages are increased transportation and energy effectiveness, but it is also important that these vehicles are safe and accepted in society. The aim of the GLAD project is to develop an initial knowledge base on efficiency, safety and human experience of ADVs for the first and last mile delivery of goods in Sweden, and on how to create a balance between these three aspects from a socio-technical perspective. To achieve this, the project will utilize Zbee vehicles that will be adapted in terms of vehicle design and autonomous vehicle behaviour, human-machine interface, teleoperation and vehicle management. The overall goal is to develop knowledge that accelerate introduction of new efficient goods delivery in our society and contributes to meeting the goals of Agenda 2030. This will be assured also by connecting a licentiate candidate to the project. The project is co-funded by Trafikverket and involves RISE, Halmstad University, Aptiv, Combitech and Clean Motion. It started in June 2020 and will run for ca 2 years. For more information contact azra.habibovic@ri.se.

Tactical Decision-Making in Autonomous Driving by Reinforcement Learning with Uncertainty Estimation. Reinforcement learning (RL) can be used to create a tactical decision-making agent for autonomous driving. However, previous approaches only output decisions and do not provide information about the agent’s confidence in the recommended actions. This paper investigates how a Bayesian RL technique, based on an ensemble of neural networks with additional randomized prior functions (RPF), can be used to estimate the uncertainty of decisions in autonomous driving. A method for classifying whether or not an action should be considered safe is also introduced. The performance of the ensemble RPF method is evaluated by training an agent on a highway driving scenario. It is shown that the trained agent can estimate the uncertainty of its decisions and indicate an unacceptable level when the agent faces a situation that is far from the training distribution. Furthermore, within the training distribution, the ensemble RPF agent outperforms a standard Deep Q-Network agent. In this study, the estimated uncertainty is used to choose safe actions in unknown situations. However, the uncertainty information could also be used to identify situations that should be added to the training process. The paper will be presented at the Intelligent Vehicles Symposium (IV) in October 2020, and a preprint is available on arXiv. The code that was used is also available on GitHub For more information, contact Carl-Johan Hoel (carl-johan.hoel@volvo.com) at Volvo Autonomous solutions. This work was partially supported by the Wallenberg Artificial Intelligence, Autonomous Systems and Software Program (WASP), funded by Knut and Alice Wallenberg Foundation, and partially by Vinnova FFI.

Autonomous Mapping of Unknown Environments Using a UAV. As part of the research conducted within the project LASH-Fire (Eu-Horizon 2020, No.814975), RISE supervised the work of Chalmers students developing an automatic object search for indoor environments using a flying drone. At the core of this system a reinforcement learning (RL) algorithm was implemented for the drone to navigate, detect obstacles, recognize objects and explore the environment. This machine learning (ML) project marks a starting point for further development towards an autonomous identification and surveillance solution in a wide range of study cases where cargo ships, like the ones studied in LASH-Fire, are an ideal target application. A modularized approach was used targeting research areas such as obstacle avoidance, object detection & recognition, simultaneous localization and mapping, etc. The exploration module was specially challenging and will require further work but the project in general was successful in providing a methodology and tools when using flying drones for indoor environments. The Master’s thesis was conducted by Erik Persson and Filip Heikkilä, and is available via this link. For more information contact boris.duran@ri.se

Projektet ESPLANADE, som började 2017 och avslutades sista mars 2020, handlade om hur man visar att ett automatiserat fordon är säkert. Det finns flera problem som måste hanteras för att man ska kunna göra en komplett säkerhetsargumentation. Projektets resultat inkluderar därför nya metoder för säkerhetsargumentation för en ADS, några av dessa är: 

  • En process för säkerhetsanalys samt designprinciper för interaktionen när en människa överlämnar kontrollen över ett fordon till en ADS eller tvärtom. Processen innehåller existerande metoder som sekvensdiagram, orsak-konsekvensanalys och felträd, men applicerade på människa-maskininteraktion istället för enbart tekniska system
  •  Hur man definierar den operativa designdomänen (ODD) för en ADS utgående från önskade användningsfall, vilket innebär en definition av parametrar inom vilka en ADS-funktion är avsedd att fungera, samt strategier för att säkerställa att fordonet håller sig inom sin ODD.
  • En metod (kallad QRN) för riskanalys och framtagande av säkerhetsmål. Till skillnad från vanliga riskanalysmetoder bygger den inte på analys av specifika situationer utan på definition av acceptabel frekvens av incidenter med olika allvarlig konsekvens, och en mappning av incidenter till olika klasser av konsekvenser. Säkerhetsmålen uttrycks så att man säkert hamnar inom acceptabla frekvenser.
  • Ett ramverk för formell och systematisk hantering av säkerhetskrav med en kombination av åtgärder under utveckling och under drift, bland annat baserat på modeller av osäkerhet.
  • Användning av metoden funktionsanalys för att distribuera beslutsfattande på en ADS-arkitektur samt framtagande av säkerhetskrav.
  • Säkerhetskontrakt och komponentbaserad design för att underlätta kompletthetsbevisning i kravnedbrytning, möjliggöra kontinuerlig produktuppdatering, samt kunna uttrycka säkerhetskrav för sensorsystem som inkluderar kamera, radar mm.

En publik rapport och länkar till de flesta av projektets publikationer finns på projekthemsidan.

Prepare Ships Project. Running for 26 months, the H2020 project “Prepare Ships”, funded by the European Global Navigation Satellite System Agency (GSA), was successfully started in December 2019. The 5 consortium partners, coming from 3 European countries have developed a machine learning based future position prediction for ships in order to avoid ship collisions and close quarter situations as well as reducing environmental impact by more advanced decision making. In a RTK (Real Time Kinematic) software solution, it will both exploiting the distinguished features of Galileo signals as well as combining it with other positioning and sensor technologies. It will use the next generation maritime communication techniques VDES and the new suit of IALA Standards (S100) on sea charts. The innovation developed during the project can make more autonomy of navigation feasible by exchanging future positions and allow eased decision making on ships, suitable to become an international game changer for the future of autonomous shipping. The demonstration and testing will be done onboard three different vessels in the Gothenburg archipelago. The project is coordinated by RISE with partners from across Europe, including SAAB, Lantmäteriet, Telko and Anavs. For more information check out our homepage, join our linkedin group or contact Johannes Hüffmeier at RISE (johannes.huffmeier@ri.se).  

How do you ensure safety of autonomous shipping? Today’s risk assessment methods, application of methods and models used in shipping are usually based on humans being directly in charge of ships, VTS, port controls, etc. and may not be sufficient to reflect and evaluate the complexities and inherent risks of introducing further automation and digitalization in the shipping domain. The introduction of smart ships will create traffic situations between manned and unmanned ships where on one hand decisions and actions are based on algorithms and on the other hand by a human operator where a large part of the decision making. Increasing the level of automation implies that the goal-based standards for shipping need to be based on a risk assessment that reflects the expected roadmaps towards more smart ships and so far, research on autonomous transportation has focused on other parts than the effect of introducing and mixing different levels of automation and only very basic standards have been proposed by classification societies, where DNVs standards [DNV, 2018] have two pages in the appendix on basic set-ups for testing and validation. The main objective of the RFAF project financed by Trafikverket is to analyse how autonomous navigation can be proven to be safe. The aim of the project is to perform a simulator-based risk identification for autonomous shipping traffic. Increasing the level of automation implies that the goal-based standards for shipping need to be based on a risk assessment that reflects the expected roadmaps towards autonomy. Based on two use cases, the routes Fredrikshamn-Göteborg and crossing of the Ljusterö fairway, relevant risks are identified based on ship simulations performed by mariners describing especially nautical challenges for more autonomous shipping resulting in a common risk model. The project lasts from January 2020-December 2022. There are 3 project partners with RISE as coordinator. For more information visit the project website or contact Johannes Hüffmeier (johannes.huffmeier@ri.se).

The SWEA-financed (Energimyndigheten) Data-driven Optimised Energy Efficiency of Ships is a national project involving 7 ship owners, 3 companies from the supply chain and RISE, lasting for 16 months. The data analysis of energy consumption is often complex and there are different driving forces for decisions. However, increased data collection can be unprofitable if you do not have methods to analyze the complex systems. Developments within machine learning provides new opportunities to develop both technically and economically powerful tools energy efficiency. Even today, to some extent, economic driving is applied, for example. eco-driving, however, the effect is in many cases limited as decision-making is more complex than the operator / navigator can see. Also, not always available incentives and motivation of individuals to reduce energy use. However, data collection is increasing both quality review and analysis are not performed to the same extent. Using the results of the project’s data collection and analysis, recommendations can be given about which tools which can be developed in a next step, such as: a) nudging, decision support system or autopilot for ECO driving, b) route optimization based on the ship’s accelerations and motions, and c) decision support based on statistics or real-time analysis of data to identify optimal operation (parameters such as sea state, current, speed, load condition, etc.). The objectives of the project are to: a) Achieve reduced energy use on the project’s vessels by 10–35% both at quay and in sea operations, b) Demonstrate potential with machine learning of operational data, and c) Demonstrate the possibility that better operational data may form the basis for the development of generic energy efficiency tools for smaller vessels in commercial traffic. For any details on the project, reach out to Johannes Hüffmeier (johannes.huffmeier@ri.se).

Photonics Private Public Partnership Roadmaps for EU’s next Framework Program Horizon EuropéThe area of photonics for automotive applications is a significant area which includes not only photonics sensors for the EU defined topic Mobility and Safety for automated Road Transport. Photonics also plays a role in the path towards the targets of Zero Emission Road Transport, Clean Energy Transition, and the Industrial Battery Value Chain. The work of defining the Strategic Research Agenda (SRA) in the specific area of Photonics with EU industrial partners, universities and research centers is performed through the EU technology platform ”Photonics21”, which is funded by the EU commission. The current roadmap for Photonics was published in the document: “Europe’s age of light! How photonics will power growth and innovation, Strategic Roadmap 2021–2027” The section on Automotive and Transport can be found in section 3.9. The coordinator of the whole Photonics 21 is done by VDI Technologiezentrum GmbH in Düsseldorf, Link. We believe this is important as there are a lot of EU research money at stake. The current recommendation by the European Parliament for the whole Horizon Europe budget 2021 -2017 is €120 Billion. The research funding will be divided among many topics where Climate, Energy, and Mobility is one of the clusters. There is a large Swedish interest in the cluster and cooperation with industry is one important factor in the program. Most, if not all, of the European automotive industry are usually involved in at least selected programs.

Now, based on feedback from the new European Commission, the board of Photonic21 have decided to reshape the roadmap and as a consequence automotive & transport will henceforth be combined with the topics of climate and energy. Besides merging the different topics in one document, this gives us an opportunity to revise the previous document into something that we believe should support our industry even better, considering that the current document was prepared in 2018 and the present situation the industry is facing. We want to ensure that the guiding document capture the specific needs of the automotive industry. The aim of the work is to define the research topics of the Strategic Research Agenda (SRA) which will define the upcoming calls in the Horizon Europe program. 

We now invite comments on the current chapter and roadmap (provided in the link above). Determined by EU commission schedules this work has to be completed on 4 September, why we need your input no later than 24 August 2020. We ask for specific text suggestions and specific roadmap suggestions (compare with p. 140 in the above mentioned Strategic Roadmap). Please forward your suggestions to Jan-Erik Källhammer at jan-erik.kallhammer@veoneer.com. He acted as chair of the group Automotive and Transport in the current roadmap and now act as co-chair of the new group Climate, Energy, and Mobility together with Dr. Heinz Seyringer of V-Research GmbH in Austria. 

AVAP takes off

I förra veckan visades ett antal självkörande / fjärrstyrda fordon upp på Testsite OER, alltså Örnsköldsviks flygplats. Det handlade om drönare för övervakning, traktorer för snöröjning och självgående gräsklippare [1] [2]. De olika fordonen har kopplats samman i ett trafiklednings- och övervakningssystem.

Projektet AVAP (Automated Vehicles for AirPorts) har drivits av LFV ihop med Semcon, FlyPulse, Combitech, Mittuniversitetet, Swedavia, RISE Viktoria och Husqvarna [3]. Tanken är dels att sådana här automatiserade system ska kunna sänka personalkostnader för mindre flygplatser, dels höja säkerhetsnivån men också utgöra ett steg i utvecklingen mot den autonoma flygplatsen, där också elflyg kan ingå som en komponent.

Egen kommentar

RISE Viktoria har alltså deltagit i AVAP-projektet och jag har följt det lite på håll och det är roligt att se det gå i land (eller kanske man ska säga flyga). Det kan sägas vara en fortsättning på DRIWS (Digital Runway Incursion Warning System), som förhindrar fordon att oavsiktligt komma in på startbanor, och följer också på Remote Tower, alltså flygtrafikledning på håll via kameror (vi har skrivit om det förut), som båda blivit kommersialiserade. Alla dessa har utvecklats på Örnsköldsviks flygplats.

Källor

[1] Anna Beijron: Ny teknik ska ge säkrare skalskydd på flygplatserna, SVT Västernorrland 13 september 2019 Länk Länk

[2] Så ska självkörande maskiner kunna sköta en flygplats – ”Har gått bra”, TV4 13 september 2019 Länk

[3] LFV visade smarta lösningar för flygplatsdrift, LFV 12 september 2019 Länk

TRB 2018

TRB – Transport Research Board – genomför sin årliga konferens i Washington DC andra veckan i januari. I år var det 97 tillfället som konferensen arrangerades. Under 5 dagar så genomfördes ungefär 800 sessioner och workshops som tillsammans innefattade cirka 5000 presentationer. För forskare och industriföreträdare som har ett intresse i transport, mobilitet och infrastruktur så är TRB en viktig kommunikationskanal för resultat samt arena för att mötas, lära och dela erfarenheter.

Själv presenterade jag en positioneringsartikel skriven av mig själv, Mikael Edvardsson (Volvo Cars), Martin Romell (Volvo Cars), Carl Johan Aldén (Semcon), Niklas Sundin (Consat) och Johan Isacson (Combitech) där vi presenterade Born to Drive som koncept med en tillhörande analys vilka styrkor, svagheter, hot och möjligheter som lösningen kan skapa för fordonslogistik. Presentationen gick bra och vid postern som vi hade samlades ett trettiotal intresserade åhörare för vidare diskussion.

Förutom den egna insatsen så bevistade jag ett flertal sessioner och möten. Två av de intressantaste tycker jag var ”Competing Visions of Transportation’s Future” och ”Toward Zero Emission 2050: The Role of Transportation Technology”. Båda sessionerna riktade in sig mot hur automatisering, elektrifiering och delad mobilitet kommer att påverka transportsystemen och när de första effekterna kan förväntas.

Bland annat så presenterade Joan Walker, University of California, en studie där de låtit familjer simulera ägandet av en självkörande bil genom att erhålla en chaufför 24 timmar om dygnet under ett antal veckor. Det visar sig att dessa familjer ökar sitt användande av fordonet med 83%, bland annat genom att de låter chauffören köra hem fordonet när de arbetar för att undvika dyra parkeringsutgifter.

Lew Fulton, Co-Director STEPS UC Davis, presenterade forskning som påvisar att effekter vad gäller miljövinster av delad mobilitet genom automatisering och delad mobilitet i hög grad kan förväntas först efter 2040. Vi vet idag för lite om hur människor kommer att ta emot den nya tekniken och behöver utveckla realistiska scenarier för hur de positiva effekter som förväntas av självkörande teknik kan skapas. En slutsats som drogs var att för att positiva effekter ska uppstå behöver automatisering, elektrifiering och delad mobilitet sammanstråla.

Bruce Schaller, Schaller Consulting, expert inom taxi och delade mobilitetstjänster, visade emellertid i en studie att de beteendeförändringar som behövs för att delad mobilitet ska bli till inte är en enkel process. Av alla de uber-resor som sker på Manhattan idag är endast 5% delade resor visar hans mätningar. Han menar att det är naivt att tro att delad mobilitet bara kommer att uppstå, incitament behöver skapas samt man behöver förstå hur människor förhåller sig till delad mobilitet. Flera av presentatörerna pekade på att det nu är mycket fokus på teknisk utveckling, men forskning behöver parallellt ske kring incitament för människor att ta till sig tekniken, samt studier av scenarier och vad som händer när autonoma fordon och icke-autonoma fordon samspelar i trafiken.

Born to Drive

Förra veckan demonstrerades resultaten från forskningsprojektet Born to Drive, där man tagit fram en lösning där bilar kör själv från tillverkningsbanan till uppställningsplats för transport [1].

Bakgrunden är att bilar rangeras väldigt många gånger, runt 25, från det att de tillverkas till att de når slutkunden. Genom att automatisera hela eller delar av dessa kan logistik-kedjan bli både effektivare och säkrare, när de kan parkeras tätare och personal inte behöver befinna sig bland bilar som kör.

Samtidigt innehåller moderna bilar i princip all teknologi som krävs för att (långsamt) köra själva inom fabriksområdet. Born to Drive bygger helt på mjukvara. Systemet innehåller också en trafikledningsfunktion.

Projektet har genomförts av Actia Nordic, Combitech, Consat, Semcon, Trafikverket, RISE Viktoria, Volvo Cars och VTI.

Källor

[1] Ny forskning skapar förarlös logistikkedja, Pressmeddelande RISE 2017-09-15 Länk

AutoFreight fokuserar på effektivare containertransporter

AutoFreight är ett nytt forskningsprojekt i Västsverige som ska fokusera på att med hjälp av automatiserade lastbilar möjliggöra effektivare transporter av containrar mellan Göteborgs hamn och Viareds logistikpark utanför Borås [1].

Visionen är att lastbilen framförs av en mänsklig förare fram till och efter riksväg 40 och automatiskt på riksvägen. I själva testerna i allmän trafik kommer dock lastbilen att framföras av en mänsklig förare hela tiden, medan testerna med automation kommer att äga rum på testbanan AstaZero. Chalmers Tekniska Högskola leder testerna med den automatiserade lastbilen på testbanan och är också med och utvecklar de algoritmer som krävs.

Projektet kommer att pågå fram till år 2020 och har en total budget på ca 50 miljoner kr. Det koordineras av AB Volvo och involverar ett tiotal partners, däribland Chalmers tekniska högskola, Combitech, GDL Transport, Ellos Group, Kerry Logistics, Speed Group, Volvo Bussar och Trafikverket.

 Källor

[1] Chalmers. Självkörande lastbilar i nytt stort forskningsprojekt. 2017-04-27 Länk

Volvolastbil för gruvor

Inom ramen för ett forskningsprojekt har Volvo AB och Combitech utvecklat en lastbil med tillhörande transportsystemlösning som kan köra själv i gruvor, både över och under jord [1]. Den använder en rad olika sensorer och GPS för att skapa en bild av omgivningen och för att navigera runt stationära och rörliga objekt. Dessutom är den utrustad med ett datainsamlingssystem för att möjliggöra systemförbättringar.

Lastbilen kräver ingen manuell övervakning eftersom transportsystemet automatiskt och kontinuerligt läser av dess status och ger order om bland annat hastighet och färdväg.

Egen kommentar

Automatiserade transportlösningar för gruvor är också under utveckling hos andra lastbilstillverkare. Scania är exempelvis involverad iQMatic, ett forskningsprojekt med fokus på utveckling av ett sådant system.

Källor

[1] Volvo Group, Global News. The future of automation is happening now at Volvo. 2016-05-09 Länk

Born To Drive

Vehicle ICT Arena på Lindholmen Science Park drar igång ett nytt projekt, Born To Drive [1].

Målet med projektet är att skapa en automatiserad logistiklösning för förflyttning av bilar från de  att de lämnar monteringsfabriken till transport och distribution och i förlängningen nå ända fram till återförsäljaren. Till detta hör också utveckling av affärsstrukturer samt utforskning av legala aspekter och användarperspektiv. Planen är att en del av lösningen ska demonstreras på ett fabriksområde sommaren 2017.

Projektet leds av Combitech. Övriga deltagare är: VCC, Actia, Consat, Semcon, Viktoria Swedish ICT, VTI och Trafikverket. VCC kommer att bidra med kunskap inom produktutveckling och automatiserade fordon. Actia, Consat, Semcon och Combitech ansvarar för systemering, utveckling samt utprovning av lösningen. Viktoria Swedish ICT bidrar med kunskap inom innovativ affärsutveckling, medan VTI och Trafikverket kommer att utforska legala aspekter.

Projektet väntas framförallt bidra till en mer effektiv transport av produkter (bilar). Detta är speciellt viktigt om man tar hänsyn till att en nytillverkad bil flyttas upp till 30 gånger tills den når återförsäljaren och att en förare behövs vid varje omplacering.

Källor

[1] Lindholmen Science Park, Vehicle ICT Arena. Självkörande bilar förenklar logistik – ännu ett steg mot morgondagens mobilitet. 2016-02-05 Länk