Etikettarkiv: VTI

AD-bussar i linköping når 10 000 passagerare

Utvecklingsprojektet ’Ride the Future’ som kör autonoma minibussar i runtom i Campus Valla och Vallastaden i Linköping har nu uppnått resor med 10 000 passagerare [1].

Vi har tidigare skrivit om projektet b.la här. De autonoma fordonen har kört sedan mars 2020, de rymmer sex passagerare, är gratis att åka och kör alla dagar i veckan på den 3,7 km långa sträckan.

Projektet drivs av VTI, Linköping University, Linköping Science Park, Transdev Sweden AB, Östgötatrafiken, Linköpings kommun, Akademiska Hus och RISE.

Källa

[1] Akademiska Hus. De självkörande bussarna har nått 10.000 passagerare! 2023-02-23 Länk

Guldkorn från svensk forskning

Det här är svenska guldkorn från er läsare. Tack för ert fantastiska jobb.

Autonoma leveransfordon i interaktion. Inom projektet GLAD (Goods deliveries under the LAst mile with autonomous Driving vehicles) genomfördes under maj månad en användarstudie där en ADV (Automated Delivery Vehicle) utrustad med s.k. eHMI:er (visuella medel som kommunicerar till människor i omgivningen) körde en kortare rutt. Syftet var att utvärdera hur individer uppfattade och förstod eHMI:erna i olika situationer, samt hur de kan utvecklas. Preliminära resultat indikerar att eHMI:erna i sig inte kommunicerade sina specifika budskap, men att de i sina givna sammanhang blev begripliga. Resultaten visade även på tydliga inlärningseffekter, d.v.s. deltagarna lärde sig snabbt eHMI:ernas budskap. Projektet är finansierad av Trafikverket och utförs av RISE, Clean Motion, Aptiv, Combitech och Högskolan i Halmstad. Kontakt: Mikael Söderman, RISE, (mikael.soderman@ri.se)

Förstudie SMART-projektet. Som en del av det EU-finansierade SMART-projektet genomför RISE en förstudie kring förutsättningarna för att komplettera kollektivtrafiken med förarlösa tjänster i Skaraborg. Projektet leds av Destination Läckö/Kinnekulle som är ett kommunalt bolag ägt av Götene och Lidköping. Preliminära resultat visar att det i några av tätorterna finns intressanta systemeffekter värda att studera närmare men att det är svårt att hitta lämpliga lösningar för lite längre avstånd mellan kollektivtrafikens hållplatser och populära utflyktsmål eller uppför Kinnekulles de branta vägar. Det finns också sträckor i området där det antagligen finns en marknad för kommersiella tjänster med manuellt framförda fordon. Kontakt: Håkan Burden, RISE, (hakan.burden@ri.se)

Generering av dimma och väderklassificering. RISE och Veoneer har under våren 2022 genomfört en förstudie ”Dimhöljt” för lära hur dimma kan skapas i klimatkammare. Syftet med den genererade dimman är att testa lidar, t ex för att filtrera bort störningar, för att validera simuleringsmodeller, för att verifiera sensorprestanda eller för att verifiera att en funktion är inom ODD. Det finns i princip tre olika sätt att slå sönder vatten till fina droppar: med vibrationer, med trycksatt vatten eller med tryckluft; man kan även generera dimma genom att kondensera ånga. Dimma är våta aerosoler i storleksordning från våglängden av synligt ljus till en faktor 20-50 ggr större. Projektet har också undersökt hur mätning av dimmans karaktäristik utförs på lämpligt sätt. Mätningar måste bland annat inkludera storleksfördelning av partiklar och mängden vatten i flytande form. Det är viktigt att skapa repeterbart testsystem med dimma. I projektet studerades därtill hur man med en lidar kan klassificera vädertyper såsom dimma, regn, snö, klart väder. Studien baserades på mätningar utomhus och i klimatkammare. De inledande försöken har varit framgångsrika och tanken är att förstudien ”Dimhöljt” följs av en fördjupad ansats. Förstudien delfinansierades av Vinnova/FFI, 2021-02582. Kontakt: Martin Sanfridson, RISE, (martin.sanfridson@ri.se)

Autonoma fordon för blinda, döva och dövblinda. I en nyligen publicerad journalartikel vid namn ”Vibrotactile guidance for trips with autonomous vehicles for persons with blindness, deafblindness, and deafness” presenteras resultat från Drive Sweden projektet ”Guidning till autonoma fordon för blinda, döva och dövblinda”. Studien visar bland annat på vikten av att beakta användarperspektivet för hela resan, inte bara fordonet i sig. Artikeln finns att läsa här. Kontaktperson Jonas Andersson (jonas.andersson@ri.se)

Best student paper på IEEE konferens. Vid konferensen IEEE Intelligent Vehicles Symposium vann doktoranden José Manuel Gaspar Sánchez och industridoktoranden Truls Nyberg från KTH och Scania första pris i kategorin ”Best student paper” med artikeln ”Foresee the Unseen: Sequential Reasoning about Hidden Obstacles for Safe Driving”. I samarbete mellan KTH och Scania har studenterna utarbetat en algoritm för autonoma fordon för att hantera skymda trafikanter på ett säkert och effektivt sätt. Forskningen har finansierats genom Vinnovas center TeCOSA och forskningsprogrammet WASP.
Andra pris i kategorin gick till industridoktoranden Magnus Gyllenhammar vid KTH och Zenseact för artikeln ”Uncertainty Aware Data Driven Precautionary Safety for Automated Driving Systems Considering Perception Failures and Event Exposure”, också den finansierad genom WASP. Kontaktperson Truls Nyberg (truls.nyberg@scania.com)  & Magnus Gyllenhammar (gyllenhammar@zenseact.com). 

Syntetisk data för validering. En vanlig utmaning inom maskininlärning är att ta fram realistisk data både för att träna sina nätverk samt för att validera dem. I dag är en vanlig metod att samla in data i den miljö där nätverket ska appliceras, t.ex. i trafiken, och sedan hoppas att det resulterande datasetet ska vara representativt. Detta är tyvärr sällan fallet eftersom att det är svårt att få med alla tänkbara scenarion. Inom FFI-projektet DIFFUSE utvecklas metoder för att skapa syntetisk data och bilder primärt för valideringssyften. Tanken är att förbättra de maskininlärningsmetoder som i dagsläget bara i begränsad omfattning ger kontroll över vad den resulterande bilden innehåller. Kontaktperson Martin Torstensson (martin.torstensson@ri.se)

Future mobility services in Ride the future-project. Ride the future is a multi-brand pilot where 8 partners join forces in running three autonomous buses along a 4 km route in Linköping’s Valla district. The partners are VTI, Linköping University, Linköping Science Park, Transdev Sweden AB, Östgötatrafiken, Linköpings kommun, Akademiska Hus and RISE. The area includes residential housing, businesses and the campus of Linköping University (LiU). 
Ride the future is furthermore one of the sites in the larger Horizon 2020-project called SHOW (SHared automation Operating models for Worldwide adoption), and a platform for several projects related to future mobility solutions. To date over 20 studies and research projects – completed and ongoing – are related to Ride the Future. A result conference was held 26 April and presented findings about the following topics:

  • Lessons learned from setting up a demonstration site with autonomous shuttle operation; paper (funding: SHOW)
  • Mobility for all – but who is ”all”?  paper (funding: Drive Sweden)
  • 5 feasibility studies (funded by VTI and summarised in here) about
    • Towards a digital twin of campus Valla for co-simulation of road users 
    • Exploring spatio-temporal accessibility in Lambohov: a pre-study. 
    • Data processing and visualization of mobile air quality measurements. 
    • Road surface unevenness and its impact on comfort and vibrations in low speed vehicles
    • Infrastructure needs at bus stops. 
  • The following studies were also presented at the conference. (funding in brackets):
    • Säkerhetsförarens uppmärksamhet och vakenhet (FFI)
    • The digital infrastructure of ELIN’s data collection (SHOW=EU)
    • Automated Vehicles as Social Agents: A Research Agenda (ELLIIT)
    • Cybersecurity of autonomous vehicles (Drive Sweden)
    • Digital guidance in public transport (funding: ERA-net)
    • Children’s perspective on future travels by autonomous bus (SHOW)
    • Autonomous shuttles for all – Experiences from children with intellectual disability (WASP-HS)
    • Game engine simulation of autonomous buses in a student project (LiU)
    • Ljudsignaler i interaktion mellan autonoma bussar och oskyddade trafikanter (LiU)
    • For more information and contact to project leaders, please get in touch with Ingrid Skogsmo (ingrid.skogsmo@vti.se)

Säkerhetskultur för automatiserade fordon. Målet för projektet Säkerhetskultur för automatiserade fordon är att utveckla metoder och verktyg för att kunna hantera säkerhetskulturen i organisationer som konstruerar och implementerar automatiserade fordon och maskiner. Projektet kommer att utforska befintlig säkerhetskultur och nya risker, samt utveckla mätinstrument för säkerhetskultur och pröva hur de kan appliceras på hållbarhet- och jämställdhetskultur. Säkerhetsfokus har länge legat på fordon och förare. Nu behövs organisationens och kundens betydelse lyftas fram. I projektet kommer därför en modell och verktyg utarbetas för att integrera säkerhetskultur i utvecklingsarbetet och för att stötta en lärandeprocess. Modellen utvecklas och utvärderas på två fallstudier från olika domäner, dels autonoma truckar samt automatiserade bussar i projektet Ride the future. En viktig aspekt av projektet är kunskaps och metodiköverföring mellan de olika tillämpningarna och mellan parterna VTI, RISE, Volvo GTT, Combitech och Toyota material handling. Projektet finansieras av Vinnovas FFI-program och genomförs på två år under ledning av VTI. Kontaktperson: Christina Stave (christina.stave@vti.se).

Studie om lastbil-VRU interaktioner inom FFI-projekt. Inom ramarna för FFI-finansierade projektet ”Externa interaktionsprinciper för förtroende och acceptans av tunga autonoma fordon” som bedrivs av Scania, RISE och Högskolan i Halmstad har doktoranden Victor Fabricius och kollegor publicerat en vetenskaplig tidskriftsartikel ”Interactions Between Heavy Trucks and Vulnerable Road Users—A Systematic Review to Inform the Interactive Capabilities of Highly Automated Trucks”. Artikeln syftar till att ge en översikt av den vetenskapliga litteraturen gällande dagens interaktioner mellan tunga lastbilar och oskyddade trafikanter – mer specifikt fotgängare och cyklister. En av insikterna från studien är att en stor del av interaktionen består av implicit kommunikation som till exempel fordons körsätt och rörelsemönster, och att den här typen av kommunikation i framtiden troligtvis kommer utgöra grunden även för interaktioner med automatiserade fordon. En annan insikt från studien är också att explicit kommunikation, i form av exempelvis ljussignaler på lastbilen i syfte att förtydliga lastbilens avsikter och handlingar, kan vara till nytta för interaktionerna. Utformning och nyttan av sådan kommunikation undersöks vidare i projektet som pågår fram till mitten av oktober 2022. Kontaktpersoner: Yanqing Zhang (yanqing.zhang@scania.com) och Daban Rizgary (daban.rizgary@ri.se)

Autonomous vehicle interactions in the hub. Scania, RISE, Boliden and Icemakers are working together in a research project “In the Hub – Samspel mellan operatörer och förarlösa fordon i framtidens transportsystem” funded by FFI. The aim is to investigate how natural interaction technologies can be integrated into autonomous transport systems to facilitate efficient and engaging experience in the hub contexts. An exploratory study have examined the potential of using verbal interaction and augmented reality (AR) to facilitate collaborations between professional human operators and unmanned self-driving heavy vehicles. Concepts that support operators in loading situations were designed and evaluated with forklift operators and rock-loading operators during a video-based study. Overall, the concepts received high scores in perceived efficiency and user experience. The results from the forklift operators supported the idea that more natural and social verbal interaction between operators and unmanned vehicles could lead to increased trust and acceptance compared to using simple voice commands. However, the results from the rock-loading operators showed that extensive use of voice interaction could become disturbing. The exploratory study thus supports the potential of using and further exploring verbal interaction and AR to facilitate human operators’ collaboration with self-driving vehicles, and the proposed concepts provide promising examples of interaction models for further investigation and implementation. The results have been presented in a paper which will be published in the conference “Applied Human Factors and Ergonomics” this year. Contact person: Yanqing Zhang (yanqing.zhang@scania.com) and Johan Fagerlönn (johan.fagerlonn@ri.se)

Heavy Automated Vehicle Operation Center (HAVOC) – Requirements and HMI design is a recently completed FFI-funded research project conducted by RISE and Scania with the following final project summary: Development trends suggest that, in spite of the optimistic announcements made by some stakeholders a few years ago, there are still technological challenges and regulatory constraints making heavy automated vehicles (HAVs) dependent on human control. Indeed, most HAV still require a human safety operator in the vehicle, and automated driving without a human “fallback” might be distant. At the same time, having a human safety operator in the vehicle jeopardises major anticipated benefits of HAVs – transport safety and efficiency. To bridge this gap, stakeholders are exploring remote operation technology, which enables HAV to be remotely operated by a human operator to some extent. The purpose of the HAVOC project was to study operator work and HMI for remote monitoring and control of heavy autonomous vehicles. The aim was to answer the following research questions:

  • What requirements are imposed on people and heavy vehicles for assessment, assistance, and driving?
  • What is required to scale the ratio between the number of operators and the number of monitored vehicles?
  • How should operator work be designed for transitions between assessment, assistance, and driving?
    A simulator was developed in Unity game engine with corresponding 3D-world and operator HMI to enable exploration of remote operation of ten vehicles in parallel. In a user study, 15 participants were invited to work for 1.5 hours and evaluate the system and work in terms of human-automation interaction. Human factors and HMI requirements were elicited for remote assessment, remote assistance, and remote driving operator tasks. The results show the importance of taking a systems perspective in developing and implementing remote operation control centers. See this link for an overview of the study and its results.
  • One of the major takeaways from the user study and the HAVOC project is the importance of a systems perspective in the analysis and design of future remote operation centers. The answer to questions such as “How many operators are needed?, How many vehicles can be monitored and controlled?, What is the best HMI?, What are the most important operator tasks?”  etc., will always rely on the dependencies between multiple human, technical and organizational factors. The ability to deal with the dependencies between factors such as operators’ skills and knowledge, operator tasks and training, HMI, vehicle capabilities, operational context, etc., lies in defining the envisioned work system and deciding what to design for. If a viable business case for remote operation is an operator:vehicle ratio of 1:1, 1:10 or 1:100 will place very different demands on overall human-automation systems design and work organisation. In this project, we have only considered single operator work. In a real application, teamwork between remote operators, traffic planners, and field personnel can be expected, further stressing the socio-technical systems approach. Contact person: Jonas Andersson (Jonas.andersson@ri.se)

Bättre säkerhet vid skolzoner

Varje år dör i USA över 100 personer och ytterligare 25 000 skadas i kollisioner med fordon i skolzoner och vid skolbusshållplatser. Med anledning av detta har Audi of America, Applied Information, Blue Bird, Fulton Co. School System, City of Alpharetta och Temple Inc demonstrerat en lösning som baseras på trådlöskommunikation (V2X) [1].

Med hjälp av en kommunikationsenhet i infrastrukturen skickas en visuell- och ljudvarning till förare som är på väg in till en skolzon eller som närmar sig en skolbuss. Demonstrationen ägde rum i staden Alpharetta i delstaten Georgia, och har inkluderat både LTE och 5G som kommunikationslösning. 

Egen kommentar

För ungefär 10 år sedan genomfördes ett EU-projekt på det här temat kallat SAFEWAY2SCHOOL som bland annat VTI, Linköpings universitet och Mälardalens högskola deltog i. Om någon av alla lösningar som föreslagits där implementerats har jag dessvärre ingen information om. Någon som vet?

Källor

[1] Audi Newsroom. Audi and partners demonstrate potential to help improve school bus and school zone safety through C-V2X deployment. 2021-05-20 Länk

Acceptans kring autonoma fordon

Den Europeiska Kommisionens e-tidning har publicerat en artikel kring acceptans av autonoma fordon [1]. Den är i huvudsak baserad på intervjuer med forskningsprojektet Trustonomys projektkoordinator Stefano Bianchi från italienska företaget algoWatt och forskningsprojektet BRAVEs projektkoordinator Ingrid Skogsmo från VTI.

Stefano Bianchi belyser utmaningen med olika målgruppers syn på autonoma fordon och att personer som är tidiga med att ta till sig ny teknik (early adopters) kan uppvisa en för stor tillit till autonoma fordon och ta för stora risker med automatiserade körfunktioner vilket i sin tur leder till olyckor och mindre tillit för autonoma fordon i resten av befolkningen. I Trustonomy-projektet utvecklar de kurser för förare där deltagarna får utbildning kring förmågorna och begränsningarna i autonoma fordon och man hoppas kunna använda sig av det här i framtiden för exempelvis yrkesförare.

Ingrid Skogsmo berättar om BRAVE-projektet där forskare samlat in enkätsvar från 7000 personer från sju länder och som bland annat visat att deltagarna litar mer på mänskliga förare än autonoma fordon. Ungefär 30% av deltagarna konstaterade att hade känt sig otrygga med att gå över vägen om ett autonomt fordon närmade sig. Studien visade också att det viktigaste för övriga trafikanter är att veta vad fordonet ska göra och när det ska göra det. Vidare så diskuteras vikten av regelverk som ett stöd till att argumentera för teknologin i autonoma fordon och skapa större förståelse.

I en annan relevant studie som nyligen publicerats undersökte forskare hur kunskap och erfarenhet av adaptiv farthållare (ACC) och filhållningsstöd (LKA) påverkade tillit till dessa system[2]. Resultaten visade bland annat:

  • Att ägare till fordon med ACC och LKA inte hade bättre kunskap om funktionernas förmågor och begränsningar än personer som inte ägde fordon med ACC och LKA.
  • Att de som ägde fordon med ACC och LKA tenderade att överskatta förmågan hos dessa system.
  • Att icke-ägare med mer kunskap litade mindre på ACC och LKA.
  • Att varken kunskap om eller inställning till ACC och LKA påverkade tillit hos ägare av fordon med dessa system.

Egen kommentar

Det intressanta som framgår av de två sista punkterna från artikeln ovan är att kunskap kring förmågor och begränsningar hos förarstödssystem inte nödvändigtvis påverkar förarans tillit till dessa system, i alla fall inte i den här studien. Forskarna föreslår därför att en översiktlig förklaring att systemen inte är felfria kan vara tillräckligt för att stötta de initiala interaktionerna som användare har med systemen.

En annan observation från min sida är att det verkar som att transparens i form av extern kommunikation skulle kunna vara ett sätt att uppnå acceptans, åtminstone när det gäller direkt interaktion mellan fotgängare och autonoma fordon. Sedan kan utbildning och informationsspridning vara en lösning på ett generellt plan. Gällande det sistnämnda så är det viktigt att ta reda på vad för information och hur mycket information som behövs, vilket delvis adresseras i den sista artikeln som presenterades ovan.

Källor

[1] Burke, F., Horizon Magazine. Do you trust automated cars? If not, you’re not alone. 2021-04-20 Länk

[2] Deguzman, C., & Donmez, B., Accident Analysis and Prevention. Knowledge of and trust in advanced driver assistance systems. 2021-04-18 Länk

Explicit och implicit kommunikation till gående

Skrivet av Ignacio Solis Marcos (VTI) och Niklas Strand (RISE)

En utmaning för det automatiserade transportsystemet är att designa automatiserade fordon som interagerar med oskyddade trafikanter på ett säkert sätt. Särskilt viktigt blir detta i trafikmiljöer där det är något oklart vem som har företräde. Ett flertal studier har rapporterat resultat som visat på effektiviteten av externa människa-maskingränssnitt (eHMI) när dessa kommunicerar explicit information till oskyddade trafikanter om till exempel fordonets automationsläge och intention (se exempelvis [1] [2]). Parallellt har andra studier lagt emfas vid implicita ledtrådar som till exempel fordonshastighet, decelerationsmönster, eller avstånd [3] [4]. För att designa en sömlös kommunikation mellan automatiserade fordon och oskyddade trafikanter är det viktigt med forskningen som fokuserar på hur explicit- och implicit information kan integreras i eHMI. 

Som en del av EU-projektet BRAVE genomfördes en studie som undersökte:

  • Den relativa betydelsen av explicit information (ett eHMI som visar orange eller blått ljust för att kommunicera intention) respektive implicit information (fartminskning) och hur detta uppfattas av fotgängaren, samt dess betydelse för beslutet att korsa vägen, eller inte. 
  • Hur de båda informationstyperna ska presenteras i närmandefasen beträffande tidpunkt (tidigt eller sent) och ordning (samtidigt, information genom eHMI före fartminskningen eller vice versa). 

Studien genomfördes i en fotgängarsimulator (virtuell verklighet) på VTI och totalt deltog 29 personer (15 män och 14 kvinnor med medelålder av 35 år). Deltagarna interagerade med 45 automatiserade fordon vid en korsning utan signalering. Varje automatiserat fordon presenterades efter att deltagarna tryckt på en knapp. Inga andra väganvändare fans med i scenariot. Fordonen visade sin intention via sitt eHMI och påbörjade fartminskningen vid olika tillfällen är det närmade sig fotgängarna. 

Resultaten tyder på att fotgängare tenderar att vänta tills den explicita- och implicita informationen finns tillgängligt och är överensstämmande. Fotgängarna var mer benägna att korsa efter en tidig fartminskning (utan eHMI information). Många av dessa beslut att korsa vägen togs utan att det fanns något företrädes information vilket kan medföra en säkerhetsrisk för föraren, fotgängaren och andra omgivande trafikanter. 

Utifrån dessa resultat kan två rekommendationer ges: (1) företrädesinformation förmedlas bäst genom tidig och parallell implicit- och explicit information, samt (2) information om intentionen att inte ge företräde förmedlas bäst genom att inte visa någon fartminskning alls. Resultaten bidrar till en bättre förståelse av vilken information som är relevant för fotgängare när dessa interagerar med framtida automatiserade fordon, men också hur den informationen ska presenteras på ett entydigt sätt.

Studien kommer tillsammans med andra projektresultat att presenteras på BRAVE-projektets slutevent den 17 februari 2021. Eventet kommer att hållas digitalt och registrering sker via projektets webbplats.

Utöver BRAVE så adresseras eHMI även i FFI-projekt Scale-up: Crowdsourcing för storskalig utvärdering av externa gränssnitt på automatiserade fordon och External interaction principles for creating trust in heavy automated vehicles samt i GLAD: Godsleverans med självkörande fordon den sista milen som delfinansieras av TrafikverketInom ramen för de två sistnämnda finansieras också en doktorand. 

Källor

[1] Habibovic, A., Lundgren, V. M., Andersson, J., Klingegård, M., Lagström, T., Sirkka, A., Fagerlönn, J., Edgren, C., Fredriksson, R., Krupenia, S., Saluäär, D., & Larsson, P. (2018). Communicating intent of automated vehicles to pedestrians. Frontiers in Psychology Länk

[2] Dey D, Habibovic, A., Löcken A, Wintersberger P, Pfleging B, Riener A, Martens M, Terken J, 2020. Taming the eHMI jungle: A classification taxonomy to guide, compare, and assess the design principles of automated vehicles’ external human-machine interfaces, Transportation Research Interdisciplinary Perspectives, Länk

[3] Dey, D., & Terken, J. (2017). Pedestrian interaction with vehicles: Roles of explicit and implicit communication. AutomotiveUI 2017 – 9th International ACM Conference on Automotive User Interfaces and Interactive Vehicular Applications, Proceedings, 109–113. Länk

[4] Lee, Y. M., Madigan, R., Giles, O., Garach-Morcillo, L., Markkula, G., Fox, C., Camara, F., Rothmueller, M., Vendelbo-Larsen, S. A., Rasmussen, P. H., Dietrich, A., Nathanael, D., Portouli, V., Schieben, A., & Merat, N. (2020). Road users rarely use explicit communication when interacting in today’s traffic: implications for automated vehicles. Cognition, Technology and Work0123456789Länk

Guldkorn från svensk forskning 2020

Trust in What? Exploring the Interdependency between an Automated Vehicle’s Driving Style and Traffic SituationsAs the progression from partial to fully autonomous vehicles (AVs) accelerates, the driver’s role will eventually change from that of active operator to that of passenger. It is argued that this change will lead to improved traffic safety, as well as increased comfort. However, to be able to reap the benefits, drivers must first trust the AV. Research into automation has shown that trust is an important prerequisite to using automation systems, since it plays an important role in creating user acceptance and in generating a positive user experience. Moreover, for the purposes of safe AV operation, it is important that the user’s trust in the automation is appropriate to the actual capabilities of the system. One important aspect that can build user trust is to conveyvehicle capability, something which is commonly communicated via displays located in the cockpit of the vehicle. However, it has also been shown that parameters such as lateral steering also provide the driver with an understanding of the vehicle’s capability. Therefore, driving styles, or how the act of driving an AV should be conducted, may affect a user’s trust. However, little research has been conducted on the impact of driving styles in AVs in everyday traffic situations; that is, situations often encountered in a day-to-day driving context, such as stopping for a pedestrian at a zebra crossing or overtaking a moving vehicle. An experimental study with 18 participants was conducted on a realistic test course using a Wizard of Oz approach. The experiment included seven everyday traffic situations that the participants’ experienced with two different driving styles, Defensive and Aggressive driving style. The results show that characteristics of everyday traffic situations have an effect on the users trust in automated vehicles (AVs). Primarily due to perceived risks (for oneself and others), task difficulties and how the AV conforms to the user’s expectation regarding how the AV should operate in everyday traffic situations. Furthermore, the results also show that there are are interdependencies between situational aspects and how the AV driving behaviour conducts actions. Thus, the AV driving behaviour needs to be designed to operate differently depending on the traffic situation, to enable the user to create an appropriate level of trust, in relation to the actual performance of the AV. Finally, trust results from the information provided by the AV’s behaviour, what it explicitly communicates via displays, and how these factors relate to the driving context. Thus, a systems approach is necessary, in which the interaction between user and automation is key, but without neglecting the equally important contextual aspects. This study was funded by Vinnova, Sweden’s Innovations Agency, under grant number 2014-01411. The study was able to use the facilities and expertise of the full-scale test environment AstaZero through the open research grant, application number A-0025. Here you can find full paper, and for more information contact Fredrick Ekman at Chalmers (fredrick.ekman@chalmers.se) or read his licentiate thesis titled Designing for Appropriate Trust in Automated Vehicles that was publicly presented earlier this year. 

The Day 1 C-ITS Application Green Light Optimal Speed Advisory. Leveraging the growing communication capabilities between vehicles, infrastructure and other road users, applications under the C-ITS umbrella are expected to improve road safety, traffic efficiency and comfort of driving by helping the driver take decisions and adapt to the traffic situation. The Day 1 set of C-ITS applications, as defined by the C-ROADS platform build on mature technologies and are expected to be deployable and provide benefits in the short term, but what scientific evidence is there on their effectiveness and what gaps in knowledge are there? For the C-ITS Day 1 application Green Light Optimal Speed Advisory (GLOSA), these questions were addressed by a systematic mapping study (to our knowledge, the first such study to be published), conducted as part of the Nordic Way 2 project (co-financed by Connecting Europe Facility, CEF project 2016-EU-TM-0051-S), presented at the European Transport Conference 2019 and published in Transportation Research Procedia in 2020. Among the findings where that while there are many published studies evaluating GLOSA, the absolute majority collect data in simulation, focused mainly on observable effects for the equipped vehicle where fuel consumption and travel time were the most prevalent effects examined. Further, there was great variation in the effects observed (for instance, fuel consumption varied from no evident reduction to approximately 70% reduction between studies) providing little consensus in concluding the effectiveness of the GLOSA application. A possible reason for the big effectiveness variation is a lack of well calibrated models used in the simulations scenarios, especially with regard to driver and fellow road user behaviour and precision of traffic light phase shift prognoses. For more information contact Niklas Mellegård at RISE (niklas.mellegard@ri.se).

Making autonomous drive skilled in extreme situations. During 2020 Sentient finalised the development and testing of the S+ Split-μ Control function, that makes autonomous drive safe in the critical situation of braking in an emergency on split friction roads. Compared to traditional ABS, the braking distance could be reduced by up to 37% while maintaining stability. The function is available also for use in manually driven cars to aid the driver perform like expert drivers would in a split-μ situation. Watch this demonstration from the Colmis test track outside of Arjeplog. More information about safety functions developed by Sentient is available at the company’s website.

Ljuddesign som ökar tillit och minskar åksjuka i självkörande bilar. Hur kan ljuddesign höja användarupplevelsen i automatiserade fordon? Denna fråga har Volvo Cars utforskat de senaste två åren tillsammans med RISE och Pole Position Production. Projektet Ljudinteraktion i Intelligenta Bilar har tagit fram helt nya typer av gränssnitt där passageraren får information om bilens kommande beteende, samt vad i trafikmiljön som bilen fokuserar på. Signalerna låter bland annat snarlikt bilens naturliga ljud vid acceleration och fartminskning, men spelas någon sekund innan bilen agerar. Projektets studier har visat att signalerna ökar passagerarnas tillit till bilen, samt minskar åksjuka för en majoritet av passagerarna. I projektets avslutade del implementeras en prototyp av ljudgränssnittet i en Volvobil, vilket gör det möjligt att uppleva ljuden i verklig trafikmiljö. Resultat från projektet kommer presenteras vid ett seminarium hos SAFER i slutet av januari. Hör av er till projektledaren Fredrik Hagman på Volvo Cars för mer info (fredrik.hagman@volvocars.com), eller besök projektets hemsida. Projektet finansieras av Fordonsstrategisk Forskning och Innovation (FFI).

DI-PPP public and private partnership platform for quick and effective implementation of digital transport infrastructure: This pre-study is jointly financed by Drive Sweden and Trafikverket to accelerate the implementation of digital infrastructure in Sweden. The project uses the Trafikverket roadmap on connected and automated road transport system extensively to explore the synergies and to support the service development. The project defines the digital transport infrastructure from a system of systems perspective with the identification of key areas, action points, and expected achievements for the year 2021 – 2025. The project calls for both top-down and bottom-up approaches to build infrastructure that on the one hand enables applications and services fulfilling the mobility needs, and on the other hand, is built on an existing infrastructure with incremental advancement. The project calls for the establishment of a public and private stakeholder partnership platform that is long-term, proactive and progressive, with strong engagement and balanced investments among stakeholders to accelerate the infrastructure implementation. The results have been presented at the Drive Sweden thematic area digital infrastructure, and for more details and reports, please contact Lei Chen at RISE (lei.chen@ri.se).

Project CeViSS. Cloud enhanced Vehicle – intelligent Sensor Sharing (CeViSS) is a joint Drive Sweden project that has run from January to December 2020. The project was financed in part by Vinnova / Drive Sweden with partnership including Carmenta, CEVT, Ericsson, Volvo Cars and Veoneer. The primary goal of the project was to extend the previously established AD Aware Traffic Control cloud with functions to study and demonstrate how the central cloud platform can be used to collect and enhance critical traffic information before safely sharing it between automotive actors. The project successfully demonstrated how data registered by a Veoneer vehicle’s sensors, was collected, analyzed and enhanced in real-time on the central cloud level and then shared with the two project OEM partners; CEVT and Volvo Cars. Their connected cars could then take appropriate action and more precisely mitigate the hazard on their road ahead. The project also showed how the Carmenta Central Traffic Cloud could send instructions to the Veoneer and CEVT cars such as a recommended speed inside geofences (to be used by the Adaptive Cruise Control (ACC)) and search requests to look for specific symbols or texts (e.g., license plate numbers). Tests were also done where the Central Traffic Cloud had direct control of on-board cameras to start sending video when the Veoneer’s test vehicle approached an accident scene. Images or live video from the scene have the potential to give 112 operators and first responders a better understanding of the situation and help dispatch the right resources as well as make a more detailed planning of the rescue operation before arrival. A series of workshops was arranged during the project with representatives from two rescue organisations to get their response on the value of the technology. Both KatastrofMedicinskt Centrum (KMC) and SOS Alarm confirmed that when planning a rescue operation as well as when organizing the work at the scene it is important to collect as much information as possible about the accident area. Images or live video transmitted from a recent accident under strict control have the potential to improve rescue operations. As the sharing of sensor data in such a way have possible privacy concerns, the legal aspects was also investigated. The results of the legal study is documented in a separate report, added as an appendix to this document. The main deliverables from the project were live proof-of-concept trials performed at several occasions with final tests successfully completed at AstaZero test track, October 19, 2020. A film documenting these tests and explaining the project results was produced and a presentation held at a webcasted Drive Sweden event on December 1, 2020 concluded the project. The project has based its work on the cloud-based platform that was created in the project ”AD Aware Traffic Control” and further extended in the project ”AD Aware Traffic Control Emergency vehicles” and the following ”AD Aware Traffic Control – Advanced Cooperative Driver Assistance” project. The project used technology in Drive Sweden Innovation Cloud and its results will be integrated in this innovation platform for future use. For more information contact Kristian Jaldemark at Carmenta (Kristian.Jaldemark@carmenta.com).

Digital Twins Are Not Monozygotic – Replicating ADAS Testing Across Simulators. Testing in simulators is an essential component in cost-efficient and effective ADAS development. Without countless hours on virtual test tracks, arguing that an ADAS is safe for use on public roads will be practically impossible. However, how can we interpret issues that are detected in a simulator? Would they generalize to the real-world environment? Would they even generalize to another simulator? In a joint study with the University of Luxembourg, RISE used search-based software testing to identify safety violations of a pedestrian detection system in TASS/Siemens PreScan and ESI Pro-SiVIC. However, when replicating the same scenario in the other simulator, the researchers found that the results often differed substantially. Consequently, the researchers recommend future V&V plans to include multiple simulators to support robust simulation-based testing. Make sure the ADAS works safely in other simulators before hitting the real-world roads! The paper pre-print is available here, for more information contact Markus Borg at RISE (markus.borg@ri.se).

Nordic initiative for transport of passengers and goods by drone (NDI): The Nordic countries are joining forces to drive the development of drone transports for both goods and passengers. The Nordic Drone Initiative (NDI) will pave the way for new sustainable business models. It can be about air-taxis, autonomous courier services or new tourist concepts. NDI is co-financed by Nordic Innovation through their Nordic Smart Mobility and Connectivity program, led by RISE and consists of 16 partners from four Nordic countries including RISE, Katla Aero, Flypulse, Kista Science City, Mainbase, LFV and Region Östergötland from Sweden; VTT, Bell Rock Advisors, Robots Expert, Business Tampere from Finland; NORCE, Nordic Edge, UAS Norway and Drone Nord from Norway; and Gate21 from Denmark. The project reference group includes Norwegian Avinor ANS and Finnish ANS. The project is welcoming partners and will collaborate with NEA – the Nordic Network for Electric Aviation to jointly plan for short- and long-haul transports with electric aircraft. For collaborations, please contact Tor Skoglund at RISE (tor.skoglund@ri.se).

Testing safety of intelligent connected vehicles in open and mixed road environment (ICV-Safe): This project is a bilateral joint effort to identify safety-critical scenarios and to develop risk assessment and mitigation methods for intelligent connected vehicles (ICVs) by taking advantage of the large-scale open connected test environment in Shanghai. The project will conduct iterative case design, data collection, simulation, and open road test. The results will lay a foundation for the safe introduction of ICVs to minimize safety risks. RISE is coordinating the Swedish part with partners including Chalmers University of Technology, Alkit Communications AB, WSP AB, and FellowBot AB. The Chinese part is coordinated by Tongji University with partners including Research Institute of Highway (RIOH) Ministry of Transport, Chang’an University, Guangzhou O.CN International Technology Co., Ltd, Shanghai SongHong Intelligent Automotive Technology Co., Ltd., and Beijing Tusen Weilai Technology Co., Ltd (TuSimple). Through the project, the partners are also working actively with Swedish actors in China outside the project consortium to explore synergies for further research collaborations and innovation. For more details, please contact Lei Chen at RISE (lei.chen@ri.se).

CTS – Heterogeneous project. This project aims to investigate effects of autonomous vehicle in a mixed traffic environment, i.e., the traffic where automated vehicles share roads with different types of manually-driven vehicles. Effects on traffic flow and safety are the main interests of the project. An example of upcoming activities in the project is a driving simulation study, which is planned during January-February 2021. The study aims to investigate whether there is a behavior adaptation among human drivers when they share roads with automated vehicles. This project is funded by VINNOVA, and it is within the scope of CTS (The China Sweden Research Centre for Traffic Safety), which is an on-going collaboration within SAFER’s research program. Partners on the Swedish consortium includes VTI, Chalmers, Volvo Cars, and Volvo Group; and partners on the Chinese consortium are RIOH, Beijing Jingwei HiRain, Tsinghua University, and Tongji University. Link: Heterogeneous Traffic Groups Cooperative Driving Behaviours Research under Mixed Traffic Condition | SAFER – Vehicle and Traffic Safety Centre at Chalmers (saferresearch.com).

Drivers’ ability to engage in a non-driving related task while in automated driving mode in real traffic. Engaging in non-driving related tasks (NDRTs) while driving can be considered distracting and safety detrimental. However, with the introduction of highly automated driving systems that relieve drivers from driving, more NDRTs will be feasible. In fact, many car manufacturers emphasize that one of the main advantages with automated cars is that it “frees up time” for other activities while on the move. This paper investigates how well drivers are able to engage in an NDRT while in automated driving mode (i.e., SAE Level 4) in real traffic, via a Wizard of Oz platform. The NDRT was designed to be visually and cognitively demanding and require manual interaction. The results show that the drivers’ attention to a great extent shifted from the road ahead towards the NDRT. Participants could perform the NDRT equally well as when in an office (e.g. correct answers, time to completion), showing that the performance did not deteriorate when in the automated vehicle. Yet, many participants indicated that they noted and reacted to environmental changes and sudden changes in vehicle motion. Participants were also surprised by their own ability to, with ease, disconnect from driving. The presented study extends previous research by identifying that drivers to a high extent are able to engage in an NDRT while in automated mode in real traffic. This is promising for future of automated cars ability to “free up time” and enable drivers to engage in non-driving related activities. The study was conducted by Volvo Cars and RISE in collaboration between two FFI funded projects: TIC – Trust to Intelligent Cars and HARMONISE – Safe interaction with different levels of automation. A pre-print of the paper is available here, and for more information contact Jonas Andersson at RISE (jonas.andersson@ri.se). 

Remote Driving Operation (REDO) project. Remote driving operation or teleoperated driving can support deployment, operation, and testing of automated vehicles. With advancement in wireless communication technology, this has recently becomes more feasible. In the REDO project, we are looking at different technical and non-technical aspects related to teleoperated driving, which include 1) interaction with remote operator; 2) feedback mode from vehicle to remote operator; 3) system architecture; and 4) laws and regulations. Demonstration is also planned towards the end of the project. This is a 3-year project funded by VINNOVA. The partners in the project are: VTI, CEVT, Einride, Ericsson, Ictech, KTH, NEVS, and Voysys. Link: REmote Driving Operation – REDO | Vinnova. For more information contact Maytheewat Aramrattana at VTI (maytheewat.aramrattana@vti.se).

Human factors in remote operation of heavy vehicles. Currently, most highly automated vehicles still require the presence of a human safety operator in the vehicle, and it is evident that automated driving without human “fallback” might be distant. On the other hand, having a human operator in the vehicle jeopardizes major anticipated benefits of automated driving – productivity. This is especially evident when it comes to heavy automated vehicles. To bridge this gap, stakeholders are exploring teleoperations technology, which enables highly automated vehicles to be remotely operated if necessary. But remote operation comes with its own challenges, both from technical and human behavior perspectives. In this SAFER co-financed prestudy, Scania and RISE have identified potential safety challenges and research gaps related to human behavior in the context of remote operation of heavy automated vehicles. A general view of the human factors related challenges within the remote operation topic can be summarized by highlighting phenomena such as physical and psychological distancing, screen delays, network latency delays, inefficient interface designs, and human operator’s cognitive limitations. These are not exclusive to one single operational level, or application type, and are often interrelated. A larger body of scientific work can be found related to human factors in remote operation in other domains (e.g., robotics, aerial drones, military). Some of the findings from these domains can have value for the automotive domain, however, generally design requirements are not directly transferable between domains as there are domain specific challenges. An overall conclusion from the prestudy is that human factors in remote operation of highly automated road vehicles have been somewhat neglected by industry and research community. By providing an overall conceptualization of remote operation and its complexity, a theoretical framework, a state of the art overview, and a list of gaps and challenges, the expectation is that this pre-study will stimulate more activities in the area. The recently started FFI-project HAVOC is example of such an activity. The pre study was co-financed by SAFER and conducted by Scania and RISE. Link to final report, for more information contact Azra Habibovic at RISE (azra.habibovic@ri.se).

Task Force – Hygiene procedures in test with research persons. Since the rapid outbreak and continued global spread of the Coronavirus Disease (COVID-19) in 2020, aspects of much of our day-to-day life in society has been impacted – our workplaces are no exception. Due to the novelty of COVID-19 to health officials in Sweden and around the world, standardized guidelines on how to safely proceed with business activities that require the sharing of physical spaces and/or equipment between individuals has yet to be established. In anticipation of this pandemic being an ongoing issue, a task force was assembled to help address this gap. The SAFER task force was comprised of transport industry professionals in Sweden that have a role in conducting research and testing that would currently be deemed to place individuals at risk of contracting the virus if one of the involved actors were to be an active carrier of the virus. Therefore, the goal of this task force was to help establish a set of general guidelines to consider when attempting to mitigate the risk of contagion while performing research or testing activities at our respective corporate facilities. Questions related to “How can experiments involving test persons in vehicles, driving simulators, virtual-reality studios, or similar test facilities continue?”, “What safety procedures should we consider to introduce in order to ensure proper hygiene for the individuals involved?”, “Is it required for drivers to wear a face mask?”, and “How do we implement physical distancing provisions pre- and post-experiment interviews?” were addressed. Partners in the Task Force were VTI (coordinator), Volvo Group Trucks Technology, Autoliv, Veoneer, RISE and Scania. The project was co-financed by SAFER. For more information contact Arne Nåbo at VTI (arne.nabo@vti.se). 

Guldkorn från svensk forskning

Dessa guldkorn är bidrag från våra läsare – stort tack för det, och för all fantastisk forskning och utveckling som ni gör. Keep up the good work!

iQ-Pilot & iQ-Mobility. These are two recently finished projects co-funded by the Strategic vehicle research and innovation programme (FFI). The focus of the projects was development of new technology to realize flexible, energy-efficient transport solutions in cities. Several proof-of-concept prototypes have been developed and demonstrated, including autonomous buses and a smart coordination system for bus fleets. The research results were presented in a webinar earlier this week. These results are the joint efforts of Scania, Ericsson, INIT, Veoneer, Royal Institute of Technology (KTH) and Örebro University. 

Human interaction with autonomous minibuses. Tom Ziemke’s research group at Linköping University, in collaboration with researchers at VTI, will during the autumn start a new research project on people’s interaction with autonomous minibuses on campus. The research will focus on method development and empirical studies of how pedestrians, bicyclists and car drivers interact with the buses. A two-year postdoc position is available via this link (application deadline: August 5). For more information contact Tom Ziemke (tom.ziemke@liu.se).

GLAD – Goods delivery under the Last mile with Autonomous Driving vehicles. Small autonomous electric delivery vehicles (ADV) are expected to transform transportation of goods under the first and last mile. The advantages are increased transportation and energy effectiveness, but it is also important that these vehicles are safe and accepted in society. The aim of the GLAD project is to develop an initial knowledge base on efficiency, safety and human experience of ADVs for the first and last mile delivery of goods in Sweden, and on how to create a balance between these three aspects from a socio-technical perspective. To achieve this, the project will utilize Zbee vehicles that will be adapted in terms of vehicle design and autonomous vehicle behaviour, human-machine interface, teleoperation and vehicle management. The overall goal is to develop knowledge that accelerate introduction of new efficient goods delivery in our society and contributes to meeting the goals of Agenda 2030. This will be assured also by connecting a licentiate candidate to the project. The project is co-funded by Trafikverket and involves RISE, Halmstad University, Aptiv, Combitech and Clean Motion. It started in June 2020 and will run for ca 2 years. For more information contact azra.habibovic@ri.se.

Tactical Decision-Making in Autonomous Driving by Reinforcement Learning with Uncertainty Estimation. Reinforcement learning (RL) can be used to create a tactical decision-making agent for autonomous driving. However, previous approaches only output decisions and do not provide information about the agent’s confidence in the recommended actions. This paper investigates how a Bayesian RL technique, based on an ensemble of neural networks with additional randomized prior functions (RPF), can be used to estimate the uncertainty of decisions in autonomous driving. A method for classifying whether or not an action should be considered safe is also introduced. The performance of the ensemble RPF method is evaluated by training an agent on a highway driving scenario. It is shown that the trained agent can estimate the uncertainty of its decisions and indicate an unacceptable level when the agent faces a situation that is far from the training distribution. Furthermore, within the training distribution, the ensemble RPF agent outperforms a standard Deep Q-Network agent. In this study, the estimated uncertainty is used to choose safe actions in unknown situations. However, the uncertainty information could also be used to identify situations that should be added to the training process. The paper will be presented at the Intelligent Vehicles Symposium (IV) in October 2020, and a preprint is available on arXiv. The code that was used is also available on GitHub For more information, contact Carl-Johan Hoel (carl-johan.hoel@volvo.com) at Volvo Autonomous solutions. This work was partially supported by the Wallenberg Artificial Intelligence, Autonomous Systems and Software Program (WASP), funded by Knut and Alice Wallenberg Foundation, and partially by Vinnova FFI.

Autonomous Mapping of Unknown Environments Using a UAV. As part of the research conducted within the project LASH-Fire (Eu-Horizon 2020, No.814975), RISE supervised the work of Chalmers students developing an automatic object search for indoor environments using a flying drone. At the core of this system a reinforcement learning (RL) algorithm was implemented for the drone to navigate, detect obstacles, recognize objects and explore the environment. This machine learning (ML) project marks a starting point for further development towards an autonomous identification and surveillance solution in a wide range of study cases where cargo ships, like the ones studied in LASH-Fire, are an ideal target application. A modularized approach was used targeting research areas such as obstacle avoidance, object detection & recognition, simultaneous localization and mapping, etc. The exploration module was specially challenging and will require further work but the project in general was successful in providing a methodology and tools when using flying drones for indoor environments. The Master’s thesis was conducted by Erik Persson and Filip Heikkilä, and is available via this link. For more information contact boris.duran@ri.se

Projektet ESPLANADE, som började 2017 och avslutades sista mars 2020, handlade om hur man visar att ett automatiserat fordon är säkert. Det finns flera problem som måste hanteras för att man ska kunna göra en komplett säkerhetsargumentation. Projektets resultat inkluderar därför nya metoder för säkerhetsargumentation för en ADS, några av dessa är: 

  • En process för säkerhetsanalys samt designprinciper för interaktionen när en människa överlämnar kontrollen över ett fordon till en ADS eller tvärtom. Processen innehåller existerande metoder som sekvensdiagram, orsak-konsekvensanalys och felträd, men applicerade på människa-maskininteraktion istället för enbart tekniska system
  •  Hur man definierar den operativa designdomänen (ODD) för en ADS utgående från önskade användningsfall, vilket innebär en definition av parametrar inom vilka en ADS-funktion är avsedd att fungera, samt strategier för att säkerställa att fordonet håller sig inom sin ODD.
  • En metod (kallad QRN) för riskanalys och framtagande av säkerhetsmål. Till skillnad från vanliga riskanalysmetoder bygger den inte på analys av specifika situationer utan på definition av acceptabel frekvens av incidenter med olika allvarlig konsekvens, och en mappning av incidenter till olika klasser av konsekvenser. Säkerhetsmålen uttrycks så att man säkert hamnar inom acceptabla frekvenser.
  • Ett ramverk för formell och systematisk hantering av säkerhetskrav med en kombination av åtgärder under utveckling och under drift, bland annat baserat på modeller av osäkerhet.
  • Användning av metoden funktionsanalys för att distribuera beslutsfattande på en ADS-arkitektur samt framtagande av säkerhetskrav.
  • Säkerhetskontrakt och komponentbaserad design för att underlätta kompletthetsbevisning i kravnedbrytning, möjliggöra kontinuerlig produktuppdatering, samt kunna uttrycka säkerhetskrav för sensorsystem som inkluderar kamera, radar mm.

En publik rapport och länkar till de flesta av projektets publikationer finns på projekthemsidan.

Prepare Ships Project. Running for 26 months, the H2020 project “Prepare Ships”, funded by the European Global Navigation Satellite System Agency (GSA), was successfully started in December 2019. The 5 consortium partners, coming from 3 European countries have developed a machine learning based future position prediction for ships in order to avoid ship collisions and close quarter situations as well as reducing environmental impact by more advanced decision making. In a RTK (Real Time Kinematic) software solution, it will both exploiting the distinguished features of Galileo signals as well as combining it with other positioning and sensor technologies. It will use the next generation maritime communication techniques VDES and the new suit of IALA Standards (S100) on sea charts. The innovation developed during the project can make more autonomy of navigation feasible by exchanging future positions and allow eased decision making on ships, suitable to become an international game changer for the future of autonomous shipping. The demonstration and testing will be done onboard three different vessels in the Gothenburg archipelago. The project is coordinated by RISE with partners from across Europe, including SAAB, Lantmäteriet, Telko and Anavs. For more information check out our homepage, join our linkedin group or contact Johannes Hüffmeier at RISE (johannes.huffmeier@ri.se).  

How do you ensure safety of autonomous shipping? Today’s risk assessment methods, application of methods and models used in shipping are usually based on humans being directly in charge of ships, VTS, port controls, etc. and may not be sufficient to reflect and evaluate the complexities and inherent risks of introducing further automation and digitalization in the shipping domain. The introduction of smart ships will create traffic situations between manned and unmanned ships where on one hand decisions and actions are based on algorithms and on the other hand by a human operator where a large part of the decision making. Increasing the level of automation implies that the goal-based standards for shipping need to be based on a risk assessment that reflects the expected roadmaps towards more smart ships and so far, research on autonomous transportation has focused on other parts than the effect of introducing and mixing different levels of automation and only very basic standards have been proposed by classification societies, where DNVs standards [DNV, 2018] have two pages in the appendix on basic set-ups for testing and validation. The main objective of the RFAF project financed by Trafikverket is to analyse how autonomous navigation can be proven to be safe. The aim of the project is to perform a simulator-based risk identification for autonomous shipping traffic. Increasing the level of automation implies that the goal-based standards for shipping need to be based on a risk assessment that reflects the expected roadmaps towards autonomy. Based on two use cases, the routes Fredrikshamn-Göteborg and crossing of the Ljusterö fairway, relevant risks are identified based on ship simulations performed by mariners describing especially nautical challenges for more autonomous shipping resulting in a common risk model. The project lasts from January 2020-December 2022. There are 3 project partners with RISE as coordinator. For more information visit the project website or contact Johannes Hüffmeier (johannes.huffmeier@ri.se).

The SWEA-financed (Energimyndigheten) Data-driven Optimised Energy Efficiency of Ships is a national project involving 7 ship owners, 3 companies from the supply chain and RISE, lasting for 16 months. The data analysis of energy consumption is often complex and there are different driving forces for decisions. However, increased data collection can be unprofitable if you do not have methods to analyze the complex systems. Developments within machine learning provides new opportunities to develop both technically and economically powerful tools energy efficiency. Even today, to some extent, economic driving is applied, for example. eco-driving, however, the effect is in many cases limited as decision-making is more complex than the operator / navigator can see. Also, not always available incentives and motivation of individuals to reduce energy use. However, data collection is increasing both quality review and analysis are not performed to the same extent. Using the results of the project’s data collection and analysis, recommendations can be given about which tools which can be developed in a next step, such as: a) nudging, decision support system or autopilot for ECO driving, b) route optimization based on the ship’s accelerations and motions, and c) decision support based on statistics or real-time analysis of data to identify optimal operation (parameters such as sea state, current, speed, load condition, etc.). The objectives of the project are to: a) Achieve reduced energy use on the project’s vessels by 10–35% both at quay and in sea operations, b) Demonstrate potential with machine learning of operational data, and c) Demonstrate the possibility that better operational data may form the basis for the development of generic energy efficiency tools for smaller vessels in commercial traffic. For any details on the project, reach out to Johannes Hüffmeier (johannes.huffmeier@ri.se).

Photonics Private Public Partnership Roadmaps for EU’s next Framework Program Horizon EuropéThe area of photonics for automotive applications is a significant area which includes not only photonics sensors for the EU defined topic Mobility and Safety for automated Road Transport. Photonics also plays a role in the path towards the targets of Zero Emission Road Transport, Clean Energy Transition, and the Industrial Battery Value Chain. The work of defining the Strategic Research Agenda (SRA) in the specific area of Photonics with EU industrial partners, universities and research centers is performed through the EU technology platform ”Photonics21”, which is funded by the EU commission. The current roadmap for Photonics was published in the document: “Europe’s age of light! How photonics will power growth and innovation, Strategic Roadmap 2021–2027” The section on Automotive and Transport can be found in section 3.9. The coordinator of the whole Photonics 21 is done by VDI Technologiezentrum GmbH in Düsseldorf, Link. We believe this is important as there are a lot of EU research money at stake. The current recommendation by the European Parliament for the whole Horizon Europe budget 2021 -2017 is €120 Billion. The research funding will be divided among many topics where Climate, Energy, and Mobility is one of the clusters. There is a large Swedish interest in the cluster and cooperation with industry is one important factor in the program. Most, if not all, of the European automotive industry are usually involved in at least selected programs.

Now, based on feedback from the new European Commission, the board of Photonic21 have decided to reshape the roadmap and as a consequence automotive & transport will henceforth be combined with the topics of climate and energy. Besides merging the different topics in one document, this gives us an opportunity to revise the previous document into something that we believe should support our industry even better, considering that the current document was prepared in 2018 and the present situation the industry is facing. We want to ensure that the guiding document capture the specific needs of the automotive industry. The aim of the work is to define the research topics of the Strategic Research Agenda (SRA) which will define the upcoming calls in the Horizon Europe program. 

We now invite comments on the current chapter and roadmap (provided in the link above). Determined by EU commission schedules this work has to be completed on 4 September, why we need your input no later than 24 August 2020. We ask for specific text suggestions and specific roadmap suggestions (compare with p. 140 in the above mentioned Strategic Roadmap). Please forward your suggestions to Jan-Erik Källhammer at jan-erik.kallhammer@veoneer.com. He acted as chair of the group Automotive and Transport in the current roadmap and now act as co-chair of the new group Climate, Energy, and Mobility together with Dr. Heinz Seyringer of V-Research GmbH in Austria. 

Resultatkonferens Trafikverket 2020

Trafikverket höll sin årliga resultatkonferens via webben det här året. I resultatkonferensen fick vi se några siffror från trafiksäkerhetsrapporten som Trafikverket, Transportstyrelsen och VTI sammanställt. Slutsatserna och siffrorna presenterades av trafiksäkerhetsanalytikerna Per Hurtig och Peter Larsson. Trafikverkets måldirektörer Maria Krafft och Jonas Eliasson ledde konferensen, och vi fick även höra ifrån infrastrukturministern Thomas Eneroth, Trafikverkets generaldirektör Lena Erixon, och Sofia Wieselfors och Melissa Frödin från Regeringskansliet.

Från ett övergripande perspektiv kan man sammanfatta resultaten som positiva gällande det viktigaste utfallet nämligen antal omkomna i trafiken, men samtidigt tyder de indikatorer som man använder för att förklara resultat så som antal omkomna i trafiken inte på några större förändringar ifrån tidigare år. Indikatorer syftar på till exempel nykter trafik, användning av cykelhjälm, hastigheter och säkra personbilar. Av nio mätbara indikatorer så är sju inte i linje för målen 2019.

Antal döda i trafiken för 2019 är 223 individer, till skillnads från 324 för 2018. Den största minskningen av omkomna ser man för dödsolyckor i personbilar som minskat med 40% jämfört med 2018. Dessvärre, så har antal omkomna i olyckor där tunga lastbilar är inblandade ökat de senaste två åren. Antal allvarligt skadade i trafiken exklusive gående fallolyckor är 3800 individer, till skillnads från 4200 för 2018. Cyklister är fortfarande speciellt utsatta i trafiken och står för hälften av fallen för allvarligt skadade i trafiken. Kategorin övrigt har också haft ökat antal olyckor 2019, och det är mer specifikt olyckor med elsparkcyklar som för 2019 var 150 fall.

Nytt etappmål för 2020-2030 presenterades: en halvering av antal omkomna i vägtrafik, sjöfart, luftfart och bantrafik. För bantrafik syftar halveringen även till att inkludera suicider, men inte för de andra trafikslagen. Nytt här är att målet inte bara syftar på vägtrafiken, utan även de andra trafikslagen. Antal allvarligt skadade inom varje trafikslag ska minska med 25%.

Egen kommentar

En signifikant del av konferensen spenderades på att prata kring det positiva utfallet för antal omkomna 2019, utan större förändring i indikatorerna som ska förklara sådana utfall. En förklaring till detta enligt Trafikverket är att olika indikatorer väger olika mycket. De indikatorer som väger tyngst för just ”risk för död” är hastighetsefterlevnad, säkra fordon, mittseparering och nykterhet, och tre av dem visar ändå bra resultat.

I diskussionen om dessa indikatorer pratade konferensledarna om att hastighetsefterlevnad inte är så bra, d.v.s. vi kör fortare än hastighetsgränserna. Den intressanta frågan blir därmed hur vi kan ändra normen och vårt körbeteende i Sverige när det kommer till hastighetsefterlevnad. Är förarstödssystem och självkörande fordon en lösning?

Vikten av sådan teknik lyftes i alla fall under konferensen som ett fokusområde för bättre utfall i trafiken.

Ni kan titta på hela konferensen här.

Trafikverkets mål: Självkörande bussar i Linköping

Trafikverket går nu ut med en förfrågan för ett demonstrationsprojekt med självkörande bussar, eller andra innovativa fordon [1]. Om det finns ett intresse bland fordonstillverkare och andra aktörer kan ett sådant projekt upphandlas senare under året.

Tanken är att upphandla ett kunskapsunderlag där man får möjlighet att lära sig hur fordonen samspelar med den omgivande infrastrukturen, enligt Peter Smeds, utredningsledare för programmet Digitaliseringen av transportsystemet på Trafikverket.

Myndigheten har redan sträckan från Vikingstad järnvägsstation till Linköpings universitetsområde i åtanke. Sträckan är ca 10 kilometer lång och har en varierad trafikmiljö som innehåller allt från 30-väg till 2+1-väg med hastighetsgränsen 100 km/h.

Ambitionen är att projektet ska pågå i två år med två bussar för att kunna undersöka funktionen i olika väderförhållanden och årstider. Grundförutsättning är att de nya bussarna är fossilfria (t.ex. eldrivna).

Egen kommentar

På tal om bussar så invigs testningen av självkörande skyttelbussar i Linköping den 10 mars kl 10. Detta görs inom ramen för ett pågående forskningsprojekt i samarbete mellan Linköpings universitet, VTI, Linköpings kommun, Östgötatrafiken, Science Park Mjärdevi, RISE, Transdev och Akademiska Hus.

Adressen är Studenthuset, campus Valla, Linköpings universitet.

Källa

Kristensson, J., Trafikverkets mål: Stora självkörande bussar i Linköping. Ny Teknik 2020-03-02 Länk

Två nya svenska projekt

Självkörande fordon på landsbygd. Projektet bedrivs av Ramboll, RISE, Trafikverket och kommunerna Skellefteå, Eskilstuna, Gotland och Lund och ska utreda möjligheterna att komplettera kollektivtrafik på svensk landsbygd med självkörande fordon givet kommuners lokala omständigheter och tekniska möjligheter [1]. Detta är en genomförbarhetsstudie som finansieras av Drive Sweden och Trafikverket och är en uppföljare till förstudien om samma ämne som slutfördes under våren 2019. 

REmote Driving Operation (REDO)Projektet bedrivs av VTI, CEVT, NEVS, Einride, Ericsson, KTH, Voysys och Ictech och ska undersöka olika aspekter av fjärrstyrda vägfordon, både personbilar och lastbilar [2]. Projektet delfinansieras av Vinnova, har en budget på ca 20 mijoner kronor och kommer att pågå i tre. 

Källor

[1] Ramboll. Självkörande bussar i landsbygd ökar tillgängligheten. 2020-02-04 Länk

[2] Ictech. Ictech deltar i ett av de största svenska forskningsprojekten kring fjärrstyrning av vägfordon. 2020-01-31 Länk