Etikettarkiv: Scania

Autonoma lastbilar i Hässleholm

En hubb till hubb lösning med autonoma lastbilar på allmän väg utforskas just nu i Hässleholm i ett samarbetsprojekt med bl.a. ingenjörs- och designföretaget Afry, energikoncernen E.ON, matvarukedjan Bergendahls Food, logistikföretaget Autoport och lastbil- och busstillverkaren Scania [1].

I projektet ska man använda eldrivna autonoma lastbilar för att leverera livsmedel mellan Bergendahls Food och Autoports logistikcenter i Hässleholm. Projektet är uppdelat i tre steg där det första är en förstudie, och där steg 2 och 3 fokuserar på lokal samt regional tillämpning av lösningen.

Man ska också ta fram juridiska och ekonomiska ramverk för den här helhetslösningen som andra aktörer i Sverige kan nyttja.

Källa

[1] Bergendahls Food. Sveriges första helhetskoncept för självkörande transporter utvecklas i Hässleholm. 2021-05-28 Länk

Automatiserade eldrivna bussars samhällseffekter

Det Trafikverksfinansierade projektet ABE Södertörn har publicerat sin slutrapport. Projektet syftade till att utforska och kartlägga vilka fysiska och digitala åtgärder som krävs för autonom framdrift av fullstora bussar. Utgångspunkten var det expanderande området Södertörn men tanken var att slutsatserna skulle kunna vara generella.

Arbetet och slutsatserna bygger på tre (relativt extrema) scenarion: ”Bus Driver Plus”, ”Automation with Adaption” och ”Automation Utopia”. En av slutsatserna är att introduktionen av automatiserade fullängdsbussar kan komma att dröja längre än tidigare bedömningar givit vid handen. Däremot bedömdes det finnas stora potentiella samhälleliga vinster bara av att göra bussresan mer bekväm med hjälp av högautomatiserade förarstödsystem.

Projektpartners var ITRL (KTH), Sweco, Trafikverket, Volvo, Keolis, och Scania. Rapporten finns att ladda ner gratis i sin helhet.

Källor

[1] KTH. ABE Södertörn releases report on autonomous buses. 2021-05-24 Länk

Scania får tillstånd

Vi har tidigare rapporterat om samarbete mellan Scania och startuppföretaget TuSimple och deras gemensamma planer att testa automatiserad körning på motorväg mellan Södertälje och Jönköping. Nu har de fått tillstånd från Transportstyrelsen att utföra dessa tester [1]. Planen är dock att mot slutet av året utöka teststräckan till att inkludera sträckan mellan Södertälje och Helsingborg. 

Det är automatiserad körning motsvarande nivå 4 enligt SAE-skalan som ska testas. Det kommer dock finnas en säkerhetsförare bakom ratten. Utöver det kommer det att finnas en teknikassistent inne i hytten som övervakar automationen. Lastbilarna kommer att vara lastade. Enligt företagen själva är det första gången som sådan testning sker i Europa. För TuSimple är det dessutom första gången att testa sin självkörande teknik i Europa.

De här testerna kommer demonstrera automatiserad körning i en viktig applikation för Scania: transport av varor och gods mellan transportlager. Testerna är således en del av ett projekt kallat Hub2Hub och väntas komma igång till sommaren. 

Här kan ni höra lite mer om Scanias vision och planer med Hub2Hub projektet. 

Egen kommentar

Det framgår inte hur många lastbilar som kommer ingå i testet och vilka hastigheter som de kommer att färdas i. Min gissning är att vi pratar om normala motorvägshastigheter, annars skulle det bli lite ett störmoment för övrig trafik. 

Vi på redaktionen ser framemot att följa det här testet!

Källor

[1] Scania. Scania tests self-​driving trucks in motorway traffic. 2021-02-03 Länk

Guldkorn från svensk forskning 2020

Trust in What? Exploring the Interdependency between an Automated Vehicle’s Driving Style and Traffic SituationsAs the progression from partial to fully autonomous vehicles (AVs) accelerates, the driver’s role will eventually change from that of active operator to that of passenger. It is argued that this change will lead to improved traffic safety, as well as increased comfort. However, to be able to reap the benefits, drivers must first trust the AV. Research into automation has shown that trust is an important prerequisite to using automation systems, since it plays an important role in creating user acceptance and in generating a positive user experience. Moreover, for the purposes of safe AV operation, it is important that the user’s trust in the automation is appropriate to the actual capabilities of the system. One important aspect that can build user trust is to conveyvehicle capability, something which is commonly communicated via displays located in the cockpit of the vehicle. However, it has also been shown that parameters such as lateral steering also provide the driver with an understanding of the vehicle’s capability. Therefore, driving styles, or how the act of driving an AV should be conducted, may affect a user’s trust. However, little research has been conducted on the impact of driving styles in AVs in everyday traffic situations; that is, situations often encountered in a day-to-day driving context, such as stopping for a pedestrian at a zebra crossing or overtaking a moving vehicle. An experimental study with 18 participants was conducted on a realistic test course using a Wizard of Oz approach. The experiment included seven everyday traffic situations that the participants’ experienced with two different driving styles, Defensive and Aggressive driving style. The results show that characteristics of everyday traffic situations have an effect on the users trust in automated vehicles (AVs). Primarily due to perceived risks (for oneself and others), task difficulties and how the AV conforms to the user’s expectation regarding how the AV should operate in everyday traffic situations. Furthermore, the results also show that there are are interdependencies between situational aspects and how the AV driving behaviour conducts actions. Thus, the AV driving behaviour needs to be designed to operate differently depending on the traffic situation, to enable the user to create an appropriate level of trust, in relation to the actual performance of the AV. Finally, trust results from the information provided by the AV’s behaviour, what it explicitly communicates via displays, and how these factors relate to the driving context. Thus, a systems approach is necessary, in which the interaction between user and automation is key, but without neglecting the equally important contextual aspects. This study was funded by Vinnova, Sweden’s Innovations Agency, under grant number 2014-01411. The study was able to use the facilities and expertise of the full-scale test environment AstaZero through the open research grant, application number A-0025. Here you can find full paper, and for more information contact Fredrick Ekman at Chalmers (fredrick.ekman@chalmers.se) or read his licentiate thesis titled Designing for Appropriate Trust in Automated Vehicles that was publicly presented earlier this year. 

The Day 1 C-ITS Application Green Light Optimal Speed Advisory. Leveraging the growing communication capabilities between vehicles, infrastructure and other road users, applications under the C-ITS umbrella are expected to improve road safety, traffic efficiency and comfort of driving by helping the driver take decisions and adapt to the traffic situation. The Day 1 set of C-ITS applications, as defined by the C-ROADS platform build on mature technologies and are expected to be deployable and provide benefits in the short term, but what scientific evidence is there on their effectiveness and what gaps in knowledge are there? For the C-ITS Day 1 application Green Light Optimal Speed Advisory (GLOSA), these questions were addressed by a systematic mapping study (to our knowledge, the first such study to be published), conducted as part of the Nordic Way 2 project (co-financed by Connecting Europe Facility, CEF project 2016-EU-TM-0051-S), presented at the European Transport Conference 2019 and published in Transportation Research Procedia in 2020. Among the findings where that while there are many published studies evaluating GLOSA, the absolute majority collect data in simulation, focused mainly on observable effects for the equipped vehicle where fuel consumption and travel time were the most prevalent effects examined. Further, there was great variation in the effects observed (for instance, fuel consumption varied from no evident reduction to approximately 70% reduction between studies) providing little consensus in concluding the effectiveness of the GLOSA application. A possible reason for the big effectiveness variation is a lack of well calibrated models used in the simulations scenarios, especially with regard to driver and fellow road user behaviour and precision of traffic light phase shift prognoses. For more information contact Niklas Mellegård at RISE (niklas.mellegard@ri.se).

Making autonomous drive skilled in extreme situations. During 2020 Sentient finalised the development and testing of the S+ Split-μ Control function, that makes autonomous drive safe in the critical situation of braking in an emergency on split friction roads. Compared to traditional ABS, the braking distance could be reduced by up to 37% while maintaining stability. The function is available also for use in manually driven cars to aid the driver perform like expert drivers would in a split-μ situation. Watch this demonstration from the Colmis test track outside of Arjeplog. More information about safety functions developed by Sentient is available at the company’s website.

Ljuddesign som ökar tillit och minskar åksjuka i självkörande bilar. Hur kan ljuddesign höja användarupplevelsen i automatiserade fordon? Denna fråga har Volvo Cars utforskat de senaste två åren tillsammans med RISE och Pole Position Production. Projektet Ljudinteraktion i Intelligenta Bilar har tagit fram helt nya typer av gränssnitt där passageraren får information om bilens kommande beteende, samt vad i trafikmiljön som bilen fokuserar på. Signalerna låter bland annat snarlikt bilens naturliga ljud vid acceleration och fartminskning, men spelas någon sekund innan bilen agerar. Projektets studier har visat att signalerna ökar passagerarnas tillit till bilen, samt minskar åksjuka för en majoritet av passagerarna. I projektets avslutade del implementeras en prototyp av ljudgränssnittet i en Volvobil, vilket gör det möjligt att uppleva ljuden i verklig trafikmiljö. Resultat från projektet kommer presenteras vid ett seminarium hos SAFER i slutet av januari. Hör av er till projektledaren Fredrik Hagman på Volvo Cars för mer info (fredrik.hagman@volvocars.com), eller besök projektets hemsida. Projektet finansieras av Fordonsstrategisk Forskning och Innovation (FFI).

DI-PPP public and private partnership platform for quick and effective implementation of digital transport infrastructure: This pre-study is jointly financed by Drive Sweden and Trafikverket to accelerate the implementation of digital infrastructure in Sweden. The project uses the Trafikverket roadmap on connected and automated road transport system extensively to explore the synergies and to support the service development. The project defines the digital transport infrastructure from a system of systems perspective with the identification of key areas, action points, and expected achievements for the year 2021 – 2025. The project calls for both top-down and bottom-up approaches to build infrastructure that on the one hand enables applications and services fulfilling the mobility needs, and on the other hand, is built on an existing infrastructure with incremental advancement. The project calls for the establishment of a public and private stakeholder partnership platform that is long-term, proactive and progressive, with strong engagement and balanced investments among stakeholders to accelerate the infrastructure implementation. The results have been presented at the Drive Sweden thematic area digital infrastructure, and for more details and reports, please contact Lei Chen at RISE (lei.chen@ri.se).

Project CeViSS. Cloud enhanced Vehicle – intelligent Sensor Sharing (CeViSS) is a joint Drive Sweden project that has run from January to December 2020. The project was financed in part by Vinnova / Drive Sweden with partnership including Carmenta, CEVT, Ericsson, Volvo Cars and Veoneer. The primary goal of the project was to extend the previously established AD Aware Traffic Control cloud with functions to study and demonstrate how the central cloud platform can be used to collect and enhance critical traffic information before safely sharing it between automotive actors. The project successfully demonstrated how data registered by a Veoneer vehicle’s sensors, was collected, analyzed and enhanced in real-time on the central cloud level and then shared with the two project OEM partners; CEVT and Volvo Cars. Their connected cars could then take appropriate action and more precisely mitigate the hazard on their road ahead. The project also showed how the Carmenta Central Traffic Cloud could send instructions to the Veoneer and CEVT cars such as a recommended speed inside geofences (to be used by the Adaptive Cruise Control (ACC)) and search requests to look for specific symbols or texts (e.g., license plate numbers). Tests were also done where the Central Traffic Cloud had direct control of on-board cameras to start sending video when the Veoneer’s test vehicle approached an accident scene. Images or live video from the scene have the potential to give 112 operators and first responders a better understanding of the situation and help dispatch the right resources as well as make a more detailed planning of the rescue operation before arrival. A series of workshops was arranged during the project with representatives from two rescue organisations to get their response on the value of the technology. Both KatastrofMedicinskt Centrum (KMC) and SOS Alarm confirmed that when planning a rescue operation as well as when organizing the work at the scene it is important to collect as much information as possible about the accident area. Images or live video transmitted from a recent accident under strict control have the potential to improve rescue operations. As the sharing of sensor data in such a way have possible privacy concerns, the legal aspects was also investigated. The results of the legal study is documented in a separate report, added as an appendix to this document. The main deliverables from the project were live proof-of-concept trials performed at several occasions with final tests successfully completed at AstaZero test track, October 19, 2020. A film documenting these tests and explaining the project results was produced and a presentation held at a webcasted Drive Sweden event on December 1, 2020 concluded the project. The project has based its work on the cloud-based platform that was created in the project ”AD Aware Traffic Control” and further extended in the project ”AD Aware Traffic Control Emergency vehicles” and the following ”AD Aware Traffic Control – Advanced Cooperative Driver Assistance” project. The project used technology in Drive Sweden Innovation Cloud and its results will be integrated in this innovation platform for future use. For more information contact Kristian Jaldemark at Carmenta (Kristian.Jaldemark@carmenta.com).

Digital Twins Are Not Monozygotic – Replicating ADAS Testing Across Simulators. Testing in simulators is an essential component in cost-efficient and effective ADAS development. Without countless hours on virtual test tracks, arguing that an ADAS is safe for use on public roads will be practically impossible. However, how can we interpret issues that are detected in a simulator? Would they generalize to the real-world environment? Would they even generalize to another simulator? In a joint study with the University of Luxembourg, RISE used search-based software testing to identify safety violations of a pedestrian detection system in TASS/Siemens PreScan and ESI Pro-SiVIC. However, when replicating the same scenario in the other simulator, the researchers found that the results often differed substantially. Consequently, the researchers recommend future V&V plans to include multiple simulators to support robust simulation-based testing. Make sure the ADAS works safely in other simulators before hitting the real-world roads! The paper pre-print is available here, for more information contact Markus Borg at RISE (markus.borg@ri.se).

Nordic initiative for transport of passengers and goods by drone (NDI): The Nordic countries are joining forces to drive the development of drone transports for both goods and passengers. The Nordic Drone Initiative (NDI) will pave the way for new sustainable business models. It can be about air-taxis, autonomous courier services or new tourist concepts. NDI is co-financed by Nordic Innovation through their Nordic Smart Mobility and Connectivity program, led by RISE and consists of 16 partners from four Nordic countries including RISE, Katla Aero, Flypulse, Kista Science City, Mainbase, LFV and Region Östergötland from Sweden; VTT, Bell Rock Advisors, Robots Expert, Business Tampere from Finland; NORCE, Nordic Edge, UAS Norway and Drone Nord from Norway; and Gate21 from Denmark. The project reference group includes Norwegian Avinor ANS and Finnish ANS. The project is welcoming partners and will collaborate with NEA – the Nordic Network for Electric Aviation to jointly plan for short- and long-haul transports with electric aircraft. For collaborations, please contact Tor Skoglund at RISE (tor.skoglund@ri.se).

Testing safety of intelligent connected vehicles in open and mixed road environment (ICV-Safe): This project is a bilateral joint effort to identify safety-critical scenarios and to develop risk assessment and mitigation methods for intelligent connected vehicles (ICVs) by taking advantage of the large-scale open connected test environment in Shanghai. The project will conduct iterative case design, data collection, simulation, and open road test. The results will lay a foundation for the safe introduction of ICVs to minimize safety risks. RISE is coordinating the Swedish part with partners including Chalmers University of Technology, Alkit Communications AB, WSP AB, and FellowBot AB. The Chinese part is coordinated by Tongji University with partners including Research Institute of Highway (RIOH) Ministry of Transport, Chang’an University, Guangzhou O.CN International Technology Co., Ltd, Shanghai SongHong Intelligent Automotive Technology Co., Ltd., and Beijing Tusen Weilai Technology Co., Ltd (TuSimple). Through the project, the partners are also working actively with Swedish actors in China outside the project consortium to explore synergies for further research collaborations and innovation. For more details, please contact Lei Chen at RISE (lei.chen@ri.se).

CTS – Heterogeneous project. This project aims to investigate effects of autonomous vehicle in a mixed traffic environment, i.e., the traffic where automated vehicles share roads with different types of manually-driven vehicles. Effects on traffic flow and safety are the main interests of the project. An example of upcoming activities in the project is a driving simulation study, which is planned during January-February 2021. The study aims to investigate whether there is a behavior adaptation among human drivers when they share roads with automated vehicles. This project is funded by VINNOVA, and it is within the scope of CTS (The China Sweden Research Centre for Traffic Safety), which is an on-going collaboration within SAFER’s research program. Partners on the Swedish consortium includes VTI, Chalmers, Volvo Cars, and Volvo Group; and partners on the Chinese consortium are RIOH, Beijing Jingwei HiRain, Tsinghua University, and Tongji University. Link: Heterogeneous Traffic Groups Cooperative Driving Behaviours Research under Mixed Traffic Condition | SAFER – Vehicle and Traffic Safety Centre at Chalmers (saferresearch.com).

Drivers’ ability to engage in a non-driving related task while in automated driving mode in real traffic. Engaging in non-driving related tasks (NDRTs) while driving can be considered distracting and safety detrimental. However, with the introduction of highly automated driving systems that relieve drivers from driving, more NDRTs will be feasible. In fact, many car manufacturers emphasize that one of the main advantages with automated cars is that it “frees up time” for other activities while on the move. This paper investigates how well drivers are able to engage in an NDRT while in automated driving mode (i.e., SAE Level 4) in real traffic, via a Wizard of Oz platform. The NDRT was designed to be visually and cognitively demanding and require manual interaction. The results show that the drivers’ attention to a great extent shifted from the road ahead towards the NDRT. Participants could perform the NDRT equally well as when in an office (e.g. correct answers, time to completion), showing that the performance did not deteriorate when in the automated vehicle. Yet, many participants indicated that they noted and reacted to environmental changes and sudden changes in vehicle motion. Participants were also surprised by their own ability to, with ease, disconnect from driving. The presented study extends previous research by identifying that drivers to a high extent are able to engage in an NDRT while in automated mode in real traffic. This is promising for future of automated cars ability to “free up time” and enable drivers to engage in non-driving related activities. The study was conducted by Volvo Cars and RISE in collaboration between two FFI funded projects: TIC – Trust to Intelligent Cars and HARMONISE – Safe interaction with different levels of automation. A pre-print of the paper is available here, and for more information contact Jonas Andersson at RISE (jonas.andersson@ri.se). 

Remote Driving Operation (REDO) project. Remote driving operation or teleoperated driving can support deployment, operation, and testing of automated vehicles. With advancement in wireless communication technology, this has recently becomes more feasible. In the REDO project, we are looking at different technical and non-technical aspects related to teleoperated driving, which include 1) interaction with remote operator; 2) feedback mode from vehicle to remote operator; 3) system architecture; and 4) laws and regulations. Demonstration is also planned towards the end of the project. This is a 3-year project funded by VINNOVA. The partners in the project are: VTI, CEVT, Einride, Ericsson, Ictech, KTH, NEVS, and Voysys. Link: REmote Driving Operation – REDO | Vinnova. For more information contact Maytheewat Aramrattana at VTI (maytheewat.aramrattana@vti.se).

Human factors in remote operation of heavy vehicles. Currently, most highly automated vehicles still require the presence of a human safety operator in the vehicle, and it is evident that automated driving without human “fallback” might be distant. On the other hand, having a human operator in the vehicle jeopardizes major anticipated benefits of automated driving – productivity. This is especially evident when it comes to heavy automated vehicles. To bridge this gap, stakeholders are exploring teleoperations technology, which enables highly automated vehicles to be remotely operated if necessary. But remote operation comes with its own challenges, both from technical and human behavior perspectives. In this SAFER co-financed prestudy, Scania and RISE have identified potential safety challenges and research gaps related to human behavior in the context of remote operation of heavy automated vehicles. A general view of the human factors related challenges within the remote operation topic can be summarized by highlighting phenomena such as physical and psychological distancing, screen delays, network latency delays, inefficient interface designs, and human operator’s cognitive limitations. These are not exclusive to one single operational level, or application type, and are often interrelated. A larger body of scientific work can be found related to human factors in remote operation in other domains (e.g., robotics, aerial drones, military). Some of the findings from these domains can have value for the automotive domain, however, generally design requirements are not directly transferable between domains as there are domain specific challenges. An overall conclusion from the prestudy is that human factors in remote operation of highly automated road vehicles have been somewhat neglected by industry and research community. By providing an overall conceptualization of remote operation and its complexity, a theoretical framework, a state of the art overview, and a list of gaps and challenges, the expectation is that this pre-study will stimulate more activities in the area. The recently started FFI-project HAVOC is example of such an activity. The pre study was co-financed by SAFER and conducted by Scania and RISE. Link to final report, for more information contact Azra Habibovic at RISE (azra.habibovic@ri.se).

Task Force – Hygiene procedures in test with research persons. Since the rapid outbreak and continued global spread of the Coronavirus Disease (COVID-19) in 2020, aspects of much of our day-to-day life in society has been impacted – our workplaces are no exception. Due to the novelty of COVID-19 to health officials in Sweden and around the world, standardized guidelines on how to safely proceed with business activities that require the sharing of physical spaces and/or equipment between individuals has yet to be established. In anticipation of this pandemic being an ongoing issue, a task force was assembled to help address this gap. The SAFER task force was comprised of transport industry professionals in Sweden that have a role in conducting research and testing that would currently be deemed to place individuals at risk of contracting the virus if one of the involved actors were to be an active carrier of the virus. Therefore, the goal of this task force was to help establish a set of general guidelines to consider when attempting to mitigate the risk of contagion while performing research or testing activities at our respective corporate facilities. Questions related to “How can experiments involving test persons in vehicles, driving simulators, virtual-reality studios, or similar test facilities continue?”, “What safety procedures should we consider to introduce in order to ensure proper hygiene for the individuals involved?”, “Is it required for drivers to wear a face mask?”, and “How do we implement physical distancing provisions pre- and post-experiment interviews?” were addressed. Partners in the Task Force were VTI (coordinator), Volvo Group Trucks Technology, Autoliv, Veoneer, RISE and Scania. The project was co-financed by SAFER. For more information contact Arne Nåbo at VTI (arne.nabo@vti.se). 

Guldkorn från svensk forskning

Dessa guldkorn är bidrag från våra läsare – stort tack för det, och för all fantastisk forskning och utveckling som ni gör. Keep up the good work!

iQ-Pilot & iQ-Mobility. These are two recently finished projects co-funded by the Strategic vehicle research and innovation programme (FFI). The focus of the projects was development of new technology to realize flexible, energy-efficient transport solutions in cities. Several proof-of-concept prototypes have been developed and demonstrated, including autonomous buses and a smart coordination system for bus fleets. The research results were presented in a webinar earlier this week. These results are the joint efforts of Scania, Ericsson, INIT, Veoneer, Royal Institute of Technology (KTH) and Örebro University. 

Human interaction with autonomous minibuses. Tom Ziemke’s research group at Linköping University, in collaboration with researchers at VTI, will during the autumn start a new research project on people’s interaction with autonomous minibuses on campus. The research will focus on method development and empirical studies of how pedestrians, bicyclists and car drivers interact with the buses. A two-year postdoc position is available via this link (application deadline: August 5). For more information contact Tom Ziemke (tom.ziemke@liu.se).

GLAD – Goods delivery under the Last mile with Autonomous Driving vehicles. Small autonomous electric delivery vehicles (ADV) are expected to transform transportation of goods under the first and last mile. The advantages are increased transportation and energy effectiveness, but it is also important that these vehicles are safe and accepted in society. The aim of the GLAD project is to develop an initial knowledge base on efficiency, safety and human experience of ADVs for the first and last mile delivery of goods in Sweden, and on how to create a balance between these three aspects from a socio-technical perspective. To achieve this, the project will utilize Zbee vehicles that will be adapted in terms of vehicle design and autonomous vehicle behaviour, human-machine interface, teleoperation and vehicle management. The overall goal is to develop knowledge that accelerate introduction of new efficient goods delivery in our society and contributes to meeting the goals of Agenda 2030. This will be assured also by connecting a licentiate candidate to the project. The project is co-funded by Trafikverket and involves RISE, Halmstad University, Aptiv, Combitech and Clean Motion. It started in June 2020 and will run for ca 2 years. For more information contact azra.habibovic@ri.se.

Tactical Decision-Making in Autonomous Driving by Reinforcement Learning with Uncertainty Estimation. Reinforcement learning (RL) can be used to create a tactical decision-making agent for autonomous driving. However, previous approaches only output decisions and do not provide information about the agent’s confidence in the recommended actions. This paper investigates how a Bayesian RL technique, based on an ensemble of neural networks with additional randomized prior functions (RPF), can be used to estimate the uncertainty of decisions in autonomous driving. A method for classifying whether or not an action should be considered safe is also introduced. The performance of the ensemble RPF method is evaluated by training an agent on a highway driving scenario. It is shown that the trained agent can estimate the uncertainty of its decisions and indicate an unacceptable level when the agent faces a situation that is far from the training distribution. Furthermore, within the training distribution, the ensemble RPF agent outperforms a standard Deep Q-Network agent. In this study, the estimated uncertainty is used to choose safe actions in unknown situations. However, the uncertainty information could also be used to identify situations that should be added to the training process. The paper will be presented at the Intelligent Vehicles Symposium (IV) in October 2020, and a preprint is available on arXiv. The code that was used is also available on GitHub For more information, contact Carl-Johan Hoel (carl-johan.hoel@volvo.com) at Volvo Autonomous solutions. This work was partially supported by the Wallenberg Artificial Intelligence, Autonomous Systems and Software Program (WASP), funded by Knut and Alice Wallenberg Foundation, and partially by Vinnova FFI.

Autonomous Mapping of Unknown Environments Using a UAV. As part of the research conducted within the project LASH-Fire (Eu-Horizon 2020, No.814975), RISE supervised the work of Chalmers students developing an automatic object search for indoor environments using a flying drone. At the core of this system a reinforcement learning (RL) algorithm was implemented for the drone to navigate, detect obstacles, recognize objects and explore the environment. This machine learning (ML) project marks a starting point for further development towards an autonomous identification and surveillance solution in a wide range of study cases where cargo ships, like the ones studied in LASH-Fire, are an ideal target application. A modularized approach was used targeting research areas such as obstacle avoidance, object detection & recognition, simultaneous localization and mapping, etc. The exploration module was specially challenging and will require further work but the project in general was successful in providing a methodology and tools when using flying drones for indoor environments. The Master’s thesis was conducted by Erik Persson and Filip Heikkilä, and is available via this link. For more information contact boris.duran@ri.se

Projektet ESPLANADE, som började 2017 och avslutades sista mars 2020, handlade om hur man visar att ett automatiserat fordon är säkert. Det finns flera problem som måste hanteras för att man ska kunna göra en komplett säkerhetsargumentation. Projektets resultat inkluderar därför nya metoder för säkerhetsargumentation för en ADS, några av dessa är: 

  • En process för säkerhetsanalys samt designprinciper för interaktionen när en människa överlämnar kontrollen över ett fordon till en ADS eller tvärtom. Processen innehåller existerande metoder som sekvensdiagram, orsak-konsekvensanalys och felträd, men applicerade på människa-maskininteraktion istället för enbart tekniska system
  •  Hur man definierar den operativa designdomänen (ODD) för en ADS utgående från önskade användningsfall, vilket innebär en definition av parametrar inom vilka en ADS-funktion är avsedd att fungera, samt strategier för att säkerställa att fordonet håller sig inom sin ODD.
  • En metod (kallad QRN) för riskanalys och framtagande av säkerhetsmål. Till skillnad från vanliga riskanalysmetoder bygger den inte på analys av specifika situationer utan på definition av acceptabel frekvens av incidenter med olika allvarlig konsekvens, och en mappning av incidenter till olika klasser av konsekvenser. Säkerhetsmålen uttrycks så att man säkert hamnar inom acceptabla frekvenser.
  • Ett ramverk för formell och systematisk hantering av säkerhetskrav med en kombination av åtgärder under utveckling och under drift, bland annat baserat på modeller av osäkerhet.
  • Användning av metoden funktionsanalys för att distribuera beslutsfattande på en ADS-arkitektur samt framtagande av säkerhetskrav.
  • Säkerhetskontrakt och komponentbaserad design för att underlätta kompletthetsbevisning i kravnedbrytning, möjliggöra kontinuerlig produktuppdatering, samt kunna uttrycka säkerhetskrav för sensorsystem som inkluderar kamera, radar mm.

En publik rapport och länkar till de flesta av projektets publikationer finns på projekthemsidan.

Prepare Ships Project. Running for 26 months, the H2020 project “Prepare Ships”, funded by the European Global Navigation Satellite System Agency (GSA), was successfully started in December 2019. The 5 consortium partners, coming from 3 European countries have developed a machine learning based future position prediction for ships in order to avoid ship collisions and close quarter situations as well as reducing environmental impact by more advanced decision making. In a RTK (Real Time Kinematic) software solution, it will both exploiting the distinguished features of Galileo signals as well as combining it with other positioning and sensor technologies. It will use the next generation maritime communication techniques VDES and the new suit of IALA Standards (S100) on sea charts. The innovation developed during the project can make more autonomy of navigation feasible by exchanging future positions and allow eased decision making on ships, suitable to become an international game changer for the future of autonomous shipping. The demonstration and testing will be done onboard three different vessels in the Gothenburg archipelago. The project is coordinated by RISE with partners from across Europe, including SAAB, Lantmäteriet, Telko and Anavs. For more information check out our homepage, join our linkedin group or contact Johannes Hüffmeier at RISE (johannes.huffmeier@ri.se).  

How do you ensure safety of autonomous shipping? Today’s risk assessment methods, application of methods and models used in shipping are usually based on humans being directly in charge of ships, VTS, port controls, etc. and may not be sufficient to reflect and evaluate the complexities and inherent risks of introducing further automation and digitalization in the shipping domain. The introduction of smart ships will create traffic situations between manned and unmanned ships where on one hand decisions and actions are based on algorithms and on the other hand by a human operator where a large part of the decision making. Increasing the level of automation implies that the goal-based standards for shipping need to be based on a risk assessment that reflects the expected roadmaps towards more smart ships and so far, research on autonomous transportation has focused on other parts than the effect of introducing and mixing different levels of automation and only very basic standards have been proposed by classification societies, where DNVs standards [DNV, 2018] have two pages in the appendix on basic set-ups for testing and validation. The main objective of the RFAF project financed by Trafikverket is to analyse how autonomous navigation can be proven to be safe. The aim of the project is to perform a simulator-based risk identification for autonomous shipping traffic. Increasing the level of automation implies that the goal-based standards for shipping need to be based on a risk assessment that reflects the expected roadmaps towards autonomy. Based on two use cases, the routes Fredrikshamn-Göteborg and crossing of the Ljusterö fairway, relevant risks are identified based on ship simulations performed by mariners describing especially nautical challenges for more autonomous shipping resulting in a common risk model. The project lasts from January 2020-December 2022. There are 3 project partners with RISE as coordinator. For more information visit the project website or contact Johannes Hüffmeier (johannes.huffmeier@ri.se).

The SWEA-financed (Energimyndigheten) Data-driven Optimised Energy Efficiency of Ships is a national project involving 7 ship owners, 3 companies from the supply chain and RISE, lasting for 16 months. The data analysis of energy consumption is often complex and there are different driving forces for decisions. However, increased data collection can be unprofitable if you do not have methods to analyze the complex systems. Developments within machine learning provides new opportunities to develop both technically and economically powerful tools energy efficiency. Even today, to some extent, economic driving is applied, for example. eco-driving, however, the effect is in many cases limited as decision-making is more complex than the operator / navigator can see. Also, not always available incentives and motivation of individuals to reduce energy use. However, data collection is increasing both quality review and analysis are not performed to the same extent. Using the results of the project’s data collection and analysis, recommendations can be given about which tools which can be developed in a next step, such as: a) nudging, decision support system or autopilot for ECO driving, b) route optimization based on the ship’s accelerations and motions, and c) decision support based on statistics or real-time analysis of data to identify optimal operation (parameters such as sea state, current, speed, load condition, etc.). The objectives of the project are to: a) Achieve reduced energy use on the project’s vessels by 10–35% both at quay and in sea operations, b) Demonstrate potential with machine learning of operational data, and c) Demonstrate the possibility that better operational data may form the basis for the development of generic energy efficiency tools for smaller vessels in commercial traffic. For any details on the project, reach out to Johannes Hüffmeier (johannes.huffmeier@ri.se).

Photonics Private Public Partnership Roadmaps for EU’s next Framework Program Horizon EuropéThe area of photonics for automotive applications is a significant area which includes not only photonics sensors for the EU defined topic Mobility and Safety for automated Road Transport. Photonics also plays a role in the path towards the targets of Zero Emission Road Transport, Clean Energy Transition, and the Industrial Battery Value Chain. The work of defining the Strategic Research Agenda (SRA) in the specific area of Photonics with EU industrial partners, universities and research centers is performed through the EU technology platform ”Photonics21”, which is funded by the EU commission. The current roadmap for Photonics was published in the document: “Europe’s age of light! How photonics will power growth and innovation, Strategic Roadmap 2021–2027” The section on Automotive and Transport can be found in section 3.9. The coordinator of the whole Photonics 21 is done by VDI Technologiezentrum GmbH in Düsseldorf, Link. We believe this is important as there are a lot of EU research money at stake. The current recommendation by the European Parliament for the whole Horizon Europe budget 2021 -2017 is €120 Billion. The research funding will be divided among many topics where Climate, Energy, and Mobility is one of the clusters. There is a large Swedish interest in the cluster and cooperation with industry is one important factor in the program. Most, if not all, of the European automotive industry are usually involved in at least selected programs.

Now, based on feedback from the new European Commission, the board of Photonic21 have decided to reshape the roadmap and as a consequence automotive & transport will henceforth be combined with the topics of climate and energy. Besides merging the different topics in one document, this gives us an opportunity to revise the previous document into something that we believe should support our industry even better, considering that the current document was prepared in 2018 and the present situation the industry is facing. We want to ensure that the guiding document capture the specific needs of the automotive industry. The aim of the work is to define the research topics of the Strategic Research Agenda (SRA) which will define the upcoming calls in the Horizon Europe program. 

We now invite comments on the current chapter and roadmap (provided in the link above). Determined by EU commission schedules this work has to be completed on 4 September, why we need your input no later than 24 August 2020. We ask for specific text suggestions and specific roadmap suggestions (compare with p. 140 in the above mentioned Strategic Roadmap). Please forward your suggestions to Jan-Erik Källhammer at jan-erik.kallhammer@veoneer.com. He acted as chair of the group Automotive and Transport in the current roadmap and now act as co-chair of the new group Climate, Energy, and Mobility together with Dr. Heinz Seyringer of V-Research GmbH in Austria. 

Einrides fjärroperatör styr två fordon

Einride som utvecklar självkörande distributionsfordon (s.k. poddar) har nu visat upp förmågan att styra två fordon med hjälp av en och samma fjärroperatör [1, 2].

I videoklippet som man kan se här visas hur en fjärroperatör manuellt dockar en lastbil vid lastkajen. Under tiden blir hon tillfrågad att assistera ett annat fordon, och efter avslutad dockning börjar hon styra det andra fordonet. Övergången mellan fordonen och uppgifter ser enkel och smidig ut.

Vi skrev förra månaden här om att Einride anställer fjärroperatörer, och att de föreställer sig i framtiden kunna ha en fjärroperatör per 10 fordon.

Egen kommentar

Det handlar alltså inte om att styra två fordon samtidigt, vilket jag inte ens kan föreställa mig hur det skulle gå till, utan det handlar om att styra ett fordon i taget. Det man egentligen ser som är intressant i videon är hur övergången från kontroll av ett fordon till ett annat går till. Operatörerna sägs även kunna byta mellan varandra i framtiden, och jag antar att det är lösningen på om flera fordon skulle behöva hjälp samtidigt.

När det kommer till fjärrstyrning av fordon så är den mänskliga faktorn en tydlig utmaning, vilket vi också ser i RISE och Scanias pågående förstudie på det temat (finansierad av SAFER). Ni kan läsa kort om förstudien här.

Källa

[1] Einride. Einride showcases one operator, multiple vehicle capability at a customer site. 2020-04-07 Länk

[2] Sawers, P., Venture Beat. Einride demos a single teleoperator taking control of multiple autonomous trucks. 2020-04-07 Länk

Project Qatar Mobility

Volkswagen AG och Qatar Investment Authority (QIA) har ingått ett avtal om samarbete kring autonoma och gröna transporter som kallas Project Qatar Mobility [1]. I praktiken innebär det att de tillsammans ska arbeta mot att integrera en flotta av självkörande bussar (SAE Level 4) i Dohas kollektivtrafik till år 2022, lagom till världsmästerskapet i fotboll. 

Målet är att utveckla hela det transportsystem som krävs för en kommersiell tjänst, från eldrivna självkörande bussar till regelverk, fysisk infrastruktur och mjukvarusystem för samåkning. 

Till att börja med är planen att lansera 35 självkörande skyttelbussar av typen ID.BUZZ AD från Volkswagen Commercial Vehicles och 10 bussar från Scania. ID.BUZZ AD kommer att transportera upp till fyra passagerare åt gången på semidefinierade rutter i stadsdelen Westbay. Scanias bussar kommer att användas för att transportera större grupper. 

För att möjliggöra detta samarbetar fyra företag från Volkswagen Group: Volkswagen Commercial Vehicles, Scania, MOIA och AID-Autonomous Intelligent Driving (som är dotterbolag till Audi). 

Kontrollerade tester av bussarna väntas börja 2020 och fältförsök kan börja så tidigt som 2021. Planen är att Project Qatar Mobility ska pågå till slutet av 2022.

Vi önskar Scania och VW lycka till!

Egen kommentar

Det är extra spännande att man ämnar testa och implementera stora självkörande bussar. Hittills har vi sett många demonstrationer av mindre skyttelbussar, men inte alls lika många demonstrationer med större bussar.

Det är oklart vad som menas exakt med semidefinierade rutter (eng. ”semi-fixed routes” ). Återstår att se.

Källor

[1] Volkswagen Newsroom. ‘Project Qatar Mobility’: Self-driving shuttles set to take Doha’s local public transport to the next level in 2022. 2019-12-14 Länk

Svensk forskning: Framtiden är ljus

MICA. CoEXist. SMART. PLATT. PRoPART. PERCEPTRON. PRELAT. DENSE. Barmark. BRAVE, HATric. Ja, så heter några av projekten som ni har äran att läsa om i årets sista sammanställning av relevant svensk forskning. För varje gång blir jag mer och mer imponerad av vår forskning och forskare. Det är fantastiskt att se hur mycket görs i vårt ”lilla” land, och det här är nog bara en bråkdel av det hela! Vi behöver bara bli bättre på att sprida våra resultat, och jag hoppas att OmAD bidrar till detta. Något annat vi behöver bli bättre på är att koppla samman våra projekt till en helhet och visa hur de leder till positiva samhällsförändringar. Kanske ett lämpligt nyårslöfte?

Stort tack till er alla som bidragit till den här sammanställningen! Det hade inte varit möjligt utan era bidrag och engagemang.

Modeling driver behavior in interactions with other road usersDriver models help improve and evaluate systems for road crash mitigation and avoidance. As systems develop and address increasingly complex scenarios. Driver models also need to be developed to be able to account for the interactions among these road users. Even as we improve driver modeling with control-theory models and actual data-driven implementations, existing driver models fail to sufficiently take interaction among road users into consideration. This paper addresses this insufficiency by proposing a new operational framework to computationally model interactions among road users. For this purpose, we introduce a definition for interaction among road users. The modeling framework is demonstrated by a specific driving scenario: the overtaking of a cyclist when an oncoming vehicle may be present. In this scenario, modeling driver interaction using Unified modeling language within our framework can lead to improved crash mitigation and avoidance through tailored system activation of automated emergency braking. This is a paper that will be presented at TRA-conference next year. The work was partly carried out at SAFER and within the FFI-project Modelling Interaction between Cyclists and Automobiles (MICA). For more information contact Prateek Thalya at Veoneer (prateek.thalya@veoneer.com).

Researchers from Veoneer have also published several other relevant papers, contact Ola Boström (ola.bostrom@veoneer.com) at Veoneer for more information: 

  • Occupant activities and sitting positions in automated vehicles in China and Sweden – The 26th International Technical Conference on the Enhanced Safety of Vehicles (ESV)
  • Passenger Car Safety Beyond ADAS: Defining Remaining Accident Configurations As Future Priorities Conference: The 26th International Technical Conference on the Enhanced Safety of Vehicles (ESV)
  • Intersection AEB Implementation Strategies for Left-Turn Across Path Crashes – Traffic Injury Prevention (ADAS)
  • A Model of Indian Drivers’ Ratings of In-Vehicle Alerts to Pedestrian Encounters on Roads in India, for presentation at the coming Human Factors and Ergonomics Society’s 2019 International Annual Meeting
  • Benefits of intuitive auditory cues for blind spot in supporting personalization; ESV2019
  • Adaptive Transitions for Automation in Cars, Trucks, Busses and Motorcycles; Intelligent Transport Systems (got invited for a journal track after the ITS World Congress)
  • How do oncoming traffic and cyclist lane position influence cyclist overtaking by drivers? – Shown at ICSC and submitted to AAP journal
  • Radar Interference Mitigation for Automated Driving – IEEE Signal processing magazine
  • How do drivers negotiate intersections with pedestrians? Fractional factorial design in an open-source driving simulator – AAP
  • Modelling discomfort: How do drivers feel when cyclists cross their path? – AAP

Driver/passenger activity mapping. FFI funded DRAMA project (2018-2020) addresses knowledge building around activity identification of drivers and passengers in vehicles to improve interaction between them and the vehicle. Mapping and detecting activities at drivers and passengers is important for both UX and traffic safety. With knowledge about activites, the HMI can be adjusted to, the currently most efficient modality. If the vehicle knows the body posture of the passengers safety functions such as airbags, brakes and steering system can be adjusted by the safety systems in the vehicle. The project develops a system that can recognizes individual and interaction activities of driver and passengers in vehicles of high level of automation (SAE3+). The project studies from literature the most relevant activities of driver and/or passenger in highly automated vehicles in terms of safety and comfort. The developed prototype acquires input data from multiple cameras mounted in the cabin of a vehicle and classify the detected activities according to the chosen in-cabin activities of interest. Machine learning algorithms are used to extract timeseries of activity features including: Body poses, head position/eye gaze/face landmark, objects, dense optical flow, and detected activity/interaction. The work is a collaboration between RISE AB and Smart Eye AB. For more information contact Thanh Hai Bui (thanh.bui@ri.se) at RISE, or Henrik Lind (henrik.lind@smarteye.se) at Smart Eye AB.

Mimicking professional bus drivers. Scania and KTH Royal Institute of Technology are currently researching motion planning algorithms for autonomous buses driving in cities. The research has so far discovered that current motion planning approaches, which are suitable for passenger vehicles, are not successful at driving buses in cities. The problem arises due to the large dimensions of buses, but mostly due to the particular chassis configuration, where the wheelbase length is much shorter than the vehicle length, resulting in large vehicle overhangs. The research then focuses on how to use these overhangs to increase the maneuverability of buses driving in cities. The result is a new motion planning approach which allows buses to briefly drive with the overhangs outside of the road and over curbs, in order to drive along narrow roads and sharp turns, while ensuring the safety of the drive. The first results of this work have been recently published in the Intelligent Transportation Systems Conference 2019. The paper can be accessed via IEEE here, or arXiv here, and a video of the results here. This work was partially supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation. For more information contact Rui Oliveira (rui.oliveira@scania.com) from the KTH Royal Institute of Technology.

CoEXist is a European project (May 2017 – April 2020) which aims at preparing the transition phase during which automated and conventional vehicles will co-exist on cities’ roads. CoEXist aims at enabling mobility stakeholders to get “AV-ready” (Automated Vehicles-ready). To achieve its objective, CoEXist have developed an assessment framework including both microscopic and macroscopic traffic models that take the introduction of automated vehicles into account. The tools developed in the framework of CoEXist are tested by road authorities in the four project cities: Helmond (NL), Milton Keynes (UK), Gothenburg (SE) and Stuttgart (DE) in order to assess the “AV-readiness” of their local-designed use cases. Swedish partners in the CoEXist project is VTI and the City of Gothenburg. Preliminary results from the traffic modelling show decreases in traffic performance in an introductory stage with lower penetration rates and AVs with limited capabilities and cautious driving logics while higher penetration rates of more advanced AVs leads to a modal change from public transport to private cars. Final event will be held in Milton Keynes (UK) on 25-26 March 2020, Homepage: https://www.h2020-coexist.eu/. Contact Johan Olstam (johan.olstam@vti.se) for more information.

SMART. The aim of the SMART project (Simulation and Modelling of Automated Road Transport) is to enhance and further develop todays state-of-the-art traffic models in order to enable analysis of future traffic systems. The project consists of two PhD projects, one focusing on microscopic traffic simulation and the behaviour of and interaction between conventional and automated vehicles, and one focusing on mesoscopic simulation and fleets of automated vehicles for public transport operations. The licentiate thesis Simulation based evaluation of flexible transit was presented by the PhD student David Leffler on June 13th, 2019. The project is carried out by VTI, KTH and LiU and is funded by Trafikverket via Centre for Traffic Research (CTR). Contact Johan Olstam (johan.olstam@vti.se) or Wilco Burghout (wilco@kth.se) for more information.

PLATT – Policylab för Autonoma Transporttjänster. Inom ramen för DriveSweden (Vinnova) har PLATT har Volvo GTT, Einride, Combitech och RISE bedrivit policyutveckling tillsammans med offentliga och kommersiella aktörer inom transportnäringen. Därigenom har vi identifierat en rad utmaningar som de sökande står inför. Det handlar både om att kunna budgetera för ansökan i form av kostnad och ledtid men också hur man vet vad som ska ingå i en ansökan. Men vi har också sett en rad olika strategier för att hantera den osäkerheten. Dels beprövade strategier som använts både specifikt inom fordonsutvecklingen och generellt inom svensk myndighetsutövning, dels nya strategier som sätter fingret på hur man kan hantera säkerheten vid införande av ny teknologi utan att hämma innovationstakten. Genom att bjuda in brett till projektets aktiviteter har vi också samlat på oss många praktiska tips på hur man som sökande både kan påverka hur lång tid det tar att få igenom en ansökan men också mängden arbete man behöver lägga ner på en framgångsrik ansökan. Tipsen belyser också aspekter som inverkar gynnsamt på hur försöksverksamheten uppfattas av omvärlden, t.ex. räddningstjänsten och allmänheten. Här hittar ni slutrapporten och projektets hemsida. För mer information kontakta Håkan Burden på RISE (hakan.burden@ri.se). 

Driving automation state-of-mind: Using training to instigate rapid mental model development. I takt med att automatiserade funktioner blir alltmer avancerade och vanliga, ökar också kraven på användarens (förarens) förståelse för korrekt användning. Inte förrän den mänskliga föraren helt kan ersättas kommer förarens förståelse av systemen vara en kritiskt komponent i att fordonet (människan tillsammans med de automatiserade systemen) framförs säkert på vägen. Finns det då något sätt att snabb-träna förare i hur man ska använda sådana system? Den nyligen publicerade studien ämnade undersöka just detta. Tidigare forskning inom förarträning och inlärning kombinerades till en tränings-metodik som sedan inkorporerades i ett träningsprogram ämnad att träna noviser i användningen av ett hypotetiskt förarassistanssystem motsvarande SAE Level 2. Resultaten indikerade inte bara att automations-träning av förare är möjlig, utan kanske viktigast av allt att de tränade förarna i betydligt större utsträckning var benägna att ingripa i situationer som krävde det (baserat på systemets begränsningar) jämfört med deras otränade motparter. Studien gjordes inom ramen för FFI-projekt HATrick. För mer information kontakta Martin Krampell (krampell@gmail.com).

PRoPART finalized. After 24 months of work, H2020 project „PRoPART”, funded by the European Global Navigation Satellite System Agency (GSA), was successfully closed. The 7 consortium partners, coming from 4 European countries have developed an RTK (Real Time Kinematic) software solution by both exploiting the distinguished features of Galileo signals as well as combining it with other positioning and sensor technologies. RTK gives the possibility of cm-level accuracy using correction data from reference stations. The innovation developed during the project can be a game changer for the future mass market of autonomous transport. The final demonstration was done in November at AstaZero and here you can see a movie and presentation material. The project was coordinated by RISE with partners from across Europe, including Scania, AstaZero and Waysure. For more information contact Stefan Nord at RISE (stefan.nord@ri.se).  

PERCEPTRON är ett FFI-projekt är ett samarbete mellan Volvokoncernen, Semcon och Chalmers som avslutas nu vid årsskiftet. Målsättningen med PERCEPTRON har varit att ta fram ett koncept för kontinuerlig datadriven utveckling vilket inbegriper infrastruktur för att ta hand om loggad data, design av neurala nätverk, träning och validering. Ett resultat av projektet är tre neurala nätverk att exekvera i fordonet för objektdetektering, detektering av filmarkeringar och vägdetektering. Nätverken har tränats på insamlad och annoterad data för lastbil på svenska vägar. En översiktlig utvärdering av hårdvara och programvara för användande neurala nätverk har också gjorts för att ge vägledning åt utvecklare. För ytterligare information kontakta projektledare Carlos Camacho, Volvokoncernen.

PRELAT är ett FFI-projekt som slutar vid årsskiftet efter fem års samarbete mellan Volvokoncernen och Chalmers. Projektet har arbetat med fully convolutional neural network för fusion av kamera och lidar i syfte att uppnå robust vägdetektion och klassificering av vägmarkeringar för lateral filhållning. Ett tidigt resultat pekar på nyttan av använda lidar för snabb och noggrann vägdetektion. Ett annat resultat från PRELAT är på vilken detaljnivå fusion av kamera och lidar bör utföras. Slutligen är ett tredje resultat hur semi-supervised training kan utformas i syfte att minska mängden kostsam annotering. PRELAT och PERCEPTRON har varit en del av den snabbt expanderande utvecklingen och användningen av neurala nätverk inom fordonsindustrin. Resultaten har bidragit med ökad förståelse och kommer att användas i framtida projekt i Volvokoncernen. För ytterligare information hänvisas till projektledare Martin Sanfridson, Volvokoncernen

Universally designed mobility for increased accessibility to societal functions. A consortium of organisations in West Sweden (Västra Götalandsregion, Västtrafik, RISE, Norconsult Astando AB, with user organisations SRF and DHR) have collaborated on a number of projects with the vision of working towards autonomous and universally designed mobility for increased accessibility to societal functions. A series of projects performed by the consortium have explored the following subjects:

  • Samverkande system för sjukresor och sjukhus (eng. Cooperative systems for medical journeys and hospitals). How a System-of-systems approach can be utilised to bridge accessibility gaps when making service journeys between public transport and hospital departments. (funded by Vinnova FFI)
  • Autonoma skyttelbussar för ökad tillgänglighet till viktiga samhällsfunktioner (eng. Autonomous shuttle busses for increased accessibility to important societal functions). Pre-study for a trial of autonomous shuttle-busses at Sahlgrenska Hospital in Gothenburg. (funded by Västra Götalandsregion kollektivtrafiknämnden)
  • Guidning till autonoma fordon för blinda, döva och dövblinda (eng. Guidance to autonomous vehicles for persons with blindness, deafness and deaf-blindness) Guiding for journeys with autonomous vehicles for people with blindness, deafness and deaf-blindness. (funded by Drive Sweden – Vinnova, Energimyndigheten och Formas)

A combination of methods including design-thinking workshops, user-trials, field studies, service-design methods and innovation processes have been utilised to ensure that user needs have been clearly understood and taken into consideration in design of potential solutions. The studies have resulted in increased understanding of the needs of users with visual impairments in autonomous transport systems and how public authorities can contribute to designing services that reduce barriers to independent travel. A large number of service improvements and solutions have been identified. Methods for using vibro-tactile communication to guide users with visual impairments to public transport have been evaluated. A plan for a one year test of autonomous busses in a hospital environment is undergoing an approval process within the regional authority. The insights gained from these projects have already begun to create value. Many solutions can be applied to existing public transport solutions. However to create future transport solutions which are created with accessibility for all from the outset, the results require more communication for example to vehicle manufacturers, city and public transport planners and more. For more information contact Steve Cook at Norconsult (Steve.Cook@norconsult.com). 

What happens to self-driving cars if the weather turns bad? Current systems offer comfort and safety in good weather. However, they often fail to sense its surroundings in visibility conditions with heavy rain, snow or fog causing the automated systems to stop their support. The DENSE project, under the ECSEL joint undertaking and co-financed by EU and national funding bodies, addresses this key challenge of autonomous driving by developing an environment perception technology that extends the performance of sensors in adverse visibility conditions. The project designs, tests and validates a generic sensor suite that enables driver assistance systems and autonomous driving systems to operate also in adverse weather. The DENSE 24/7 all-weather sensor suite combines Radar, Short-Wave Infrared (SWIR), gated camera sensor, and LIDAR. In addition, a mobile Road State Sensor assesses the road surface conditions. For maximizing efficiency, DENSE implements a high-level fusion platform integration between the individual sensors. DENSE use artificial neural networks to fuse all sensor information at pixel level, leading to an enriched and enhanced multi-spectral image. The system has been integrated in a test vehicle and demonstrated under controlled conditions in a weather chamber and evaluated under real-life conditions in Central and Northern Europe. Project duration is between June 2016-February 2020. There are 15 project partners with Daimler as coordinator. For more information visit the project website or contact Jan-Erik Källhammer at Veoner (jan-erik.kallhammer@veoneer.com).

Projekt Automatiserad vägdrift med kortnamn ”Barmark” har som målsättning att genom automatisering av drift- och underhållsfordon bidra till förbättrad arbetsmiljö, ökad resiliens samt minskade säsongsvariationer vid val av transportslag. Projektet tar fram ett fordon som kör och navigerar självständigt längs en definierad rutt samtidigt som det utför ett arbetsuppdrag och interagerar med omgivningen. Inom projektet sker fordonsanpassning exv. av bromssystem, midja och EHI styrning, utveckling och anpassning av sensorsystem exv. drönarburna radarsystem, ultraljud, GPS/Video samt utveckling och anpassning av webbaserad front-end med loggning av fordon med förare i trafik. Vidare utförs analys av infrastruktur och testscenarier inför projektdemonstrationer som kommer utföras kommande vinter- och sommarsäsong. Projektgruppen utgörs av RISE, Semcon, CIT, Peab, Swevia, Skanska, Svensk Markservice, Trafikverket, Alkit, Teade, AstaZero och Lundberg Hymas, där RISE är koordinator. Projektet pågår 2018-05-01 till 2020-08-30 och finansieras av det strategiska innovationsprogrammet InfraSweden2030, en gemensam satsning av Vinnova, Formas och Energimyndigheten samt av projektpartners. For mer information kontakta Viveca Wallqvist på RISE (viveca.wallqvist@ri.se). 

Användargränssnitt för att upptäcka oskyddade trafikanter I syfte att förbättra tilltro och acceptans för SAE nivå 3. I EU-projektet BRAVE, Bridging gaps for the adoption of Automated VEhicles som koordineras av VTI, Statens väg- och transportforskningsinstitut, bedrivs forskning för att bidra till förbättrad säkerhet och acceptans av automatiserade fordon. I projektet har VTI under hösten genomfört en studie i körsimulatorn Sim IV på Lindholmen i Göteborg. Bakgrunden till studien är att implementering av automatiserade körsystem på SAE nivå 3 i urbana miljöer utgör en utmaning, i det att återkommande och svårförutsägbara interaktioner mellan fordon och oskyddade trafikanter behöver hanteras. För att adressera utmaningen har projektet utvecklat ett koncept för användargränssnittet som håller föraren informerad om närvaron av oskyddade trafikanter i den närliggande omgivningen. Genom att göra denna typ av information tillgänglig för föraren ges hen möjlighet att avsluta uppgifter av sekundär karaktär, såsom att se på film och liknande, och i samarbete med systemet övervaka körningen fram till dess att det är säkert att återgå till sekundära uppgifter. I körsimulatorstudien fick deltagare med och utan erfarenhet av supportfunktioner på SAE nivå 2 köra i en urban miljö samtidigt som dom kunde titta på film. Nivån av information angående oskyddade trafikanter varierades över fyra betingelser: (1.) ingen information, (2.) en varning för att förmå föraren att återta kontroll när en kollision var nära förestående, (3.) en förvarning som meddelade om närvaron av oskyddade trafikanter, samt (4.) kombination av varnings- och förvarningskoncepten. Studiens resultat visar att en strategi för användargränssnittet som integrerar förvarnings- och varningsmeddelandet är den lösning som är att föredra för att förbättra säkerheten, samtidigt som förarens tilltro till systemet förbättras. Vidare visade studien att tidigare erfarenhet av SAE nivå 2 är avgörande för om strategin fungerar eller inte. Resultaten stödjer design av användargränssnitt för automatiserade körfunktioner baserat på behov, preferenser och förmågor hos förare för att säkerställa bättre acceptans och säkerhet. För mer information om projektet kontakta Niklas Strand, Ignacio Solis Marcos eller Ingrid Skogsmo på VTI eller se www.brave-project-eu eller följ projektet på Twitter @BRAVE_H2020 

Resultat från MAN:s platooningtester

MAN har kört platooningtester med två lastbilar i Bayern; de har sammanlagt kört 39 000 km på Autobahn mellan München och Nürnberg. Bilarna höll ett avstånd på 15-20 m mellan varandra via vad man kallar en ”elektronisk dragstång”. Den första bilen är manuellt körd medan de bakom följer automatiskt men med förare i hytten [1]. I nästa steg tänker MAN att minska avståndet till ca 10 m.

Resultaten var blandade: visserligen hade systemen en ganska bra tillförlitlighet (98%) och förarna litade på systemet, men samtidigt så blev inte bränslebesparingen den förväntade. Det sägs bero på alla störningar som sker i verklig trafik, så som regn, vägarbeten, motorvägskorsningar etc. Typiskt måste fordonståget lösas upp vid varje sådan störning, ett skäl till att konkurrenten Mercedes sagt sig ge upp tankarna på platooning. Samtidigt har Ford Otosan (en turkisk lastbilstillverkare som samägs av Ford Motor Company och Koç Holding) och AVL startat tester med platooning i Turkiet [2], liksom Hyundai i Korea.

Egen kommentar

Platooning eller inte? Tekniken är kanske inte jättesvår men samtidigt verkar det som att de ekonomiska vinsterna inte är så stora heller. Så för lastbilstillverkarna finns det kanske lägre hängande frukter, som t.ex. autonom körning i gruvor eller i hamnar (t.ex. Scania och Volvo/UD Trucks).

Källor

[1] Peter Maahn, Maximiliane Reichhardt: Platooning: MAN stellt Testergebnisse vor, Automobil-Industrie 2019-11-26 Länk

[2] Tara Craig: Ford Otosan and AVL take next AV step, Autonomous Vehicle International 2019-11-08 Länk

Telematics Valley: AI in Automotive – Reality Check

Årets Telematics Valley-konferens handlade om AI inom fordonsindustrin. Här några korta referat.

The Great Math Gap of AI
Carl Lindberg, AI Innovation Sweden
“Matematik, statistik och datavetenskap = AI”
Observation: många hatar matte i skolan och många är dåliga i matematik. Men för att förstå AI måste du kunna matematik och statistik, vilket krävs för att utveckla AI-team och deras kompetens.

AI essential component for automotive
Shafiq Urréhman, CEVT
AI-utveckling är tidskrävande och kräver mycket arbete med data. Datapreparation och märkning tar 80% av tiden.
Nästa stora steg för AI är att använda kvantdatorer för att öka beräkningskapaciteten.

AI based occupant sensing is the key to unleash a new level of functions
Henrik Lind, Smart Eye
Förarövervakningssystem krävs i fordon från 2023 av EU.

What we know that we don’t know
Mats Nordlund, Zenuity
Nyckelfrågor:
• Vad kommer andra trafikanter att göra?
• Bevisa säkerheten
• Framtida lagar och förordningar
• Träning av neurala nätverk
• Minska kostnader för sensorer
Forskningsområden:
• Prediktion av fotgängares rörelser och interaktion med fordon med hjälp av maskininlärning.
• Positionering och ruttprognoser

Automation
Sasko Cuklev, AB Volvo
Det finns stora vinster med automatiserade fordon för godstrafik:
• Ta bort föraren
• Ökad utnyttjandegrad av fordonen
• Minskat underhåll och reducerad bränsleförbrukning
• Plus säkrare och mer förutsägbara fordon
”Använd automatisering där det gör en stor nytta”
Affärsmodellen håller på att förändras. Numera beställer kunderna inte bara bilar, de önskar transporttjänster från A till B.
Flera piloter med automatiserade fordon pågår, bl.a i.
• Avgränsade områden, kalkstengruva i Norge
• Publika områden, hub till hub, 2 projekt pågår.
Vera är en transportlösning för gruvdrift, hamnar och motorvägar.

Egen kommentar: En bra presentation som visar applikationer för automatisering som inte är långt borta.

Autonomous driving in the Nordics –  Geofenced or SAE L5?
Hari Sentamala, Sensible 4
I närtid kommer autonoma fordon kunna köras inom avgränsade, geofencade områden. En säker autonom transport behöver kunna hantera alla väder- och miljöscenarier, där är vi inte idag. Sensible 4 arbetar med att använda redundans med hjälp av olika sensorer och kombinera och analysera resultaten från alla sensorerna så en säkrare autonom funktion kan fås.
Fälttester med autonoma fordon under vinterförhållanden ovanför polcirkeln har positionsnoggrannhet bättre än 18 cm uppnåtts.

Egen kommentar: En bra presentation med mycket humor. ”När SAE-nivån når 5 ändrar vi företagsnamn till Sensible 5”. Från en teknisk synpunkt ser de sig själva som ett sensormjukvaruföretag som använder många sensorer och uppkoppling i sina lösningar.

The importance of Data Quality and Governance for DAIR (Data and AI Ready)
Sofia Serafimovska, SAM Management Consulting
Affärsaspekter och KPIer är viktiga för att hitta och välja den information som krävs.

Machine Learning vs Software development – Verification & validation challenges
Lars Tornberg, Volvo Cars
Hur göra maskininlärning/AI säkert i verklig drift? Träningen av algoritmen kan inte återspegla alla möjliga scenarier.
Ett koncept är att använda en ”safety cage”. Analysera resultaten och validera modellen om de är trovärdiga. Föremål som modellen inte har tränats för, kan i ”safety cage” analysen tala om att detta är något nytt och resultatet därmed inte är säkerställt.

AI on the dark side of the moon
Peter Nordin, Semcon
Är AI ett hot? Ja! Elon Musk, Bill Gates, Stephan Hawkins tror det. Var försiktig med hur AI används. I första steget används AI för bra saker som att upptäcka cancer. Men redan idag är falska nyheter en verklighet. Psykologi och etik måste ingå i AI-utvecklingen.

Egen kommentar: Förmodligen måste EU och regeringar definiera etiska regler och lagstiftning om AI-lösningar. Peter gör en sammanfattning av science fiction-filmer som kan vara verklighet med AI släppt utan etiska aspekter. Då slutar det vara roligt.

Developing environmental model with ML from the ground truth data and scaling it in the cloud
Ulrich Wurstbauer, Luxoft
AD-validering kräver simulering i en virtual reality-modell ” Varför?

  • Fälttester på väg, 1 000 mil körning och ger nästan ingen data som krrävs för validering.
  • Re-simuleringar med hjälp av sensordata, 100 000 000 mil körning och ger ca 1% av data som krävs för validering
  • Simulator i virtual reality, kan ge 99% av nödvändiga data.

Men simulatorer kräver:

  • Modeller, med fokus på detektion, identifiering och prediktion.
  • Skalbarhet
  • En öppen dataplattform för att samla in, sortera och lagra data.

””Retail vision, applying AD approach for enterprise applications”
Atif Kureishy, ​​Teradata
Data + AI = Bättre svar och beslut.
Förutsäga försäljning med hjälp av människors beteende i butiker och använda information för att ändra butiken eller personalen för att förbättra försäljningen.

Egen kommentar: En känd applikation för AI att förutsäga försäljning eller kundreaktioner av olika marknadsföringsåtgärder.

AI risk, AI safety, AI ethics
Olle Häggström, Chalmers
EU har publicerat AI-dokument med etiska riktlinjer för tillförlitlig AI. Det är det första steget men behöver mer arbete för att vara användbar. Olle ser ett behov av regler för AI-applikationer.

Olles svar på publikens frågor:
Andra AI-områden kan vara att automatisera textilindustrin och föra produktionen närmare slutkunderna.
AI har svårt att ta över jobb med hög efterfrågan på social interaktion eller kreativitet.

”An inspiration map of AI in West Sweden.”
Erik Behm, BRG
AI växer inom transporter och fordonstillverkning. Life science, säkerhetsbranschen och finans växer också snabbt.

”Collaboration enabling driver-vehicle-infrastructure automation”
Edvard Brinck, Ericsson och Ola Boström, Veoneer
Uppgiften att att skapa förtroende för autonom mobilitet. Trafiksäkerhet är ett område som kan utvecklas med hjälp av AI och uppkopplade fordon.
2020 3 miljarder trafikanter, få automatiserade fordon >L2 och 1,4 miljoner dödsolyckor
2025 kommer L2+ att vara vanligt
2050 har samverkande säkerhet etablerats, det finns 6 miljarder trafikanter men dödsolyckorna har minskat till 0,7 miljoner.
Att förutsäga mobilitet för trafikanter är ett MobilityXlab-samarbete mellan Ericsson, Viscando och Veoneer.
Två megatrender är analys i realtid och tjänstefiering.

Egen kommentar: Ökad trafiksäkerhet är en bra användning av AI tillsammans med uppkopplade, samverkande fordon och trafiksystem.

How can AI and fashion help the exposed profession of truck drivers become safer?
Helena Iremo, Scania Group, Erik Tengedal, Imagimob
Uppgradering av säkerhetsvästen med uppkoppling och användning av ljus, intelligenta AI-algoritmer, accelerometer och gyro.

The journey to unleash the value of data with AI!
Robert Valton och Fredrik Moeschlin, AB Volvo
Beskriver arbetet hos Volvo med data och AI.

Develop AI cheaper and faster with collaborations
Hans Salomonsson, EmbeDL
Användning av syntetiskt genererade data för träning av AI.

Peter Kurzwelly, AI-innovation of Sweden.
Det finns en AI online-kurs på svenska. https://www.elementsofai.com/
Gör kursen! En uppföljning är på gång.

Sammanfattning

Det var många intressanta presentationer, och många om ”hur arbeta med AI i dina lösningar”. Min reflektion är att det har varit ännu mer intressant, om man tagit upp vad AI kan lösa och vad andra metoder kan lösa enklare för transportsystem och ta en bättre helhetssyn på ämnet.