Etikettarkiv: EasyMile

Elektronik i Fordon 2016

Skrivet av Azra Habibovic och Johan Wedlin

Konferensen Elektronik i Fordon arrangerades för elfte gången den 11-12 maj i Göteborg. Sedan förra året hade den växt betydligt, från ca 330 till ca 450 deltagare från en bredare krets än tidigare. Men fortfarande domineras den av deltagare från den svenska fordonsindustrin.

Förutom drygt 40 presentationer var det också en paneldebatt på ämnet ”En ny leverantörsindustri med många möjligheter”.

Konferensens andra dag var uppdelad i fem spår och vi bevakade inte allt men här är i alla fall en sammanfattning.

Dan Gunnarsson från BMW inledde konferensen med att prata om trender:

  • Ökande komplexitet och kortare ledtider kräver nya strukturer i utveckling och dokumentation av elektronik och mjukvara.
  • Nya spelare som Tesla, Google och Apple förändrar spelreglerna i en allt högre innovationshastighet.
  • För att möta de ökande kundkraven krävs ett revolutionärt angreppssätt. Man måste reducera traditionen, ”legacy”, så mycket som möjligt.
  • Förändring av affärsmodeller från att sälja bilar till att sälja tjänster, som BMWs DriveNow, ParkNow, ChargeNow och Connected Mobility Cloud.
Tekniska förändringar är bland annat:
  • Från fail safe till fail operational – en stor förändring av både elarkitektur och utvecklingsprocess.
  • Från flash updates till remote updates.
  • Från Local processing of sensor data till Big Data.
  • Från signal-based communication till Service and IP-based communication (Ethernet).

Jonny Andersson och Viktor Kaznov från Scania pratade om utmaningarna vid automatisering av tunga fordon, speciellt när man går från nivå 3 till nivå 4 enligt SAE-skalan, då man inte längre kan räkna med att falla tillbaka på föraren att ta över om något problem uppstår. Utmaningarna är betydligt större för tunga fordon, bland annat pga. den annorlunda fordonsdynamiken (längre bromssträckor, vältningsrisk etc).

För att säkra att produkterna har lång livslängd krävs inkrementell utveckling dvs. att man tar tillvara på de erfarenheter som finns – alltså att bevara ”legacy”.

Peter Bardenfelth-Hansen från Tesla Motors berättade om Teslas resa så här långt.

Tesla grundades för 13 år sedan – samma tidsperiod som då New York-trafiken övergick från dominerad av hästar till enbart bilar.

Företagets uttalade uppdrag är att accelerera världens omställning till hållbara transporter. Alla de idag ca 14000 anställda lever efter detta. Hos Tesla är det mycket högt tempo – som att hoppa på en trampkvarn i full fart och försöka hålla masken. Man gör i princip 4 års arbete på ett.

En anledning till att andra biltillverkare inte gör eldrivna högprestandabilar är att de i så fall skulle kannibalisera på sina andra, ICE-drivna bilar. Tesla är accelerator och ju fler andra tillverkare som gör elfordon, desto bättre går det för Tesla.

När man började rekrytera personal så var det, utom på utvecklingssidan, bara möjligt att få jobb hos Tesla om man inte tidigare hade arbetat i bilbranschen. Man ville ha människor med nytt perspektiv och inte få in ”legacy” = så här brukar man göra i fordonsindustrin.

Man har ett kundfokuserat angreppssätt, vilket innebär snabba produktändringar inkl. ”over the air”-uppdateringar och också en snabb köp-process där man i princip eliminerat återförsäljarledet – kunderna beställer bilen på nätet.

Teknikutvecklingen går fort så även kostnaderna minskar snabbt. Insikt om detta har lett till strategin att börja med att lansera en sportbil (Tesla Roadster), därefter dyra lyxbilar (Model S och Model X) för att först därefter komma med bilar för högvolym (Model 3).

I 4 generationer har vi lärt oss att ta bilen till bensinstationen. Att lära sig att ladda bilen tar tid. Ett sätt att minska räckviddsoron är Teslas snabbladdningsstationer, men för vardagsbruk är det bäst med hemmaladdning.

Martin Hiller från Volvo Cars pratade om kommunikationsbehov i automatiserade bilar. Han, liksom några andra föreläsare, lyfte fram vikten av Ethernet. Det har möjliggjort betydligt större bredband jämfört med andra nätverk som CAN och Flexray, något som är av stor betydelse för signalbehandlingen.

Martin pratade också om hur kravet på processorer har förändrats. Från generella CPU (centralenheter) till en kombination av GPU (grafikenheter), DSP (signalbehandlingsenheter) och ASIC (applikations-specifika enheter).

Synkronisering av olika enheter, inom och mellan fordon, är också viktigt att säkerställa. Ett klockfel på tio ms kan innebära 20 cm fel i positionering vid 70 km/h hastighet, hundra ms 2 meter.

Automatiserad körning för också med sig mycket större krav på redundans på olika systemnivåer från sensorer till hårdvara, kommunikation, fordonsreglering (inkl. ställdon) och kraftförsörjning. För att uppnå detta kommer styrenheterna i Drive Me-bilarna att vara ihopkopplade i form av distribuerad stjärntopologi (distributed star topology). På det viset säkerställs att de mest vitala delarna av systemet fungerar och klarar av att stanna bilen på ett säkert sätt även när en eller flera delar av systemet slutar fungera.

Henrik Lind från Volvo Cars pratade också redundans med fokus på objektdetektering. För att uppnå hög redundans i Drive Me-bilarna kommer det finnas upp till tre sensorer som detekterar samma objekt. Följaktligen är antalet sensorer stort, och paketering av dessa sensorer är en tydlig utmaning.

Teststräckan som valts för projektet är relativt enkel, vilket är ingen slump direkt: valideringsmetoder är inte klara ännu, och en lösning är att förenkla förutsättningarna. För att vara på säkra sidan kommer bilarna att lämna kontrollen över till föraren i god tid innan korsningar och trafikljus.

Detektering av små objekt som exempelvis råttor och harar på vägen är en utmaning, speciellt på långa avstånd. En annan utmaning kopplad till detta är hur bilen ska hantera sådana objekt – ska den väja eller köra över dem? Just nu finns det inga konkreta svar, men utvecklingen går framåt både på sensor- och på algoritmsidan.

Eftersom Drive Me är ett forskningsprojekt kommer bilarna att utrustas med datainspelningsenheter och på det viset möjliggöra vidareutveckling av systemet. Det handlar om stora datamängder och troligtvis kommer data behöva laddas ner varannan månad.

En fråga som lyftes fram från publiken var om förarna kommer kunna ta över kontrollen när som helst. Troligtvis kommer detta styras av regler och bestämmelser på internationell nivå.

Annie Rydström, också från Volvo Cars, pratade om användarupplevelsen vid automatiserad körning och hur man säkerställer att användarna litar på automatiserade fordon och upplever dem säkra och behagliga.

Hon nämnde tre olika metoder som Volvo Cars använder för att adressera detta. Utvärdering i körsimulatorer är en sådan metod. Den är applicerbar för exempelvis utvärdering av användbarheten av ett gränssnitt, men för att studera tillit och liknande faktorer behövs andra angreppssätt. Wizard of Oz-metodiken för testbanor, där förarna tror att de använder en automatiserad bil som inte nödvändigtvis är automatiserad, kan delvis ge svar på sådana frågor. För att studera detta fullt ut behöver fälttester utföras. Beteendeförändringar hos förarna är speciellt intressanta att studera när det gäller förarstödsystem och automatiserad körning, något som man i princip kommer åt endast via fälttester.

Azra Habibovic från Viktoria Swedish ICT gav en överblick av pågående aktiviteter inom området runt om i världen. Hon förklarade att det finns två tydliga utvecklingstrender:

  • evolutionär (automationsgraden ökar successivt, ratten är kvar i fordonet)
  • revolutionär (helt automatiserad körning direkt, det finns ingen ratt i fordonet)

Just nu har dessa två trender flera gemensamma nämnare: fokus ligger på utvalda trafikmiljöer och hastigheter, på bra vägar, ljus, och goda väderförhållanden. Aktörerna som arbetar efter den evolutionära principen fokuserar framförallt på motorvägskörning och parkeringsmanövrar, medan aktörerna som följer den revolutionära principen fokuserar på stadskörning och lägre hastigheter.

Inom ramen för den evolutionära principen är interaktionen mellan förare och det automatiserade fordonet en tydlig utmaning. Aktörerna på den revolutionära sidan möts däremot av flera tekniska utmaningar då det inte finns någon förare som kan ta över kontrollen om systemet fallerar.

På personbilssidan kan man säga att alla väletablerade tillverkare arbetar efter den evolutionära principen och att nya aktörer som Google, EasyMile och Navya satsar på den revolutionära principen. På lastbilssidan tillämpas den evolutionära principen för allmänna vägar (typiskt konvojkörning/platooning) medan den revolutionära tillämpas på inhägnade områden (typiskt gruvor).

Azra presenterade också några ”hot topics” inom området:

  • Detaljerade 3D kartor
  • Detektering
  • Situationsmedvetenhet
  • Trafiksäkerhet och hur man säkerställer den
  • Datasäkerhet
  • Sociala interaktioner
  • Lagar och regler

Slutligen påpekade hon att samverkan och samarbeten mellan aktörer och mellan olika typer av aktörer ökar. Dessutom vill många samhällen satsa på automatiserade fordon för att de ser att det kan förbättra samhällena, t.ex. med färre parkeringsplatser och med bättre mobilitet för människor och varor.

Navyas bussar på kärnkraftverk i Frankrike

Från den 17 mars är det möjligt att åka med helt självkörande bussar på kärnkraftverket EDF i Civaux i Frankrike [1]. Sex små bussar av typen Navya Arma, som tillverkats av det franska företaget Navya, kommer nämligen att finnas tillgängliga för anställda på kärnkraftverket och ersätta de konventionella bussar som hittills trafikerat området.

På det viset kommer turtätheten att förbättras från 15 till 3 minuter, vilket i sig kommer att leda till bättre produktivitet och en besparing på ungefär 3 miljoner euro per år. Dessutom väntas mängden koldioxidutsläpp på kärnkraftverket minska med 40 ton.

Egen kommentar

Man kan säga att Navya är en konkurrent till EasyMile, ett annat franskt företag som också fokuserar på små eldrivna och självkörande bussar och som gjort sig känt genom det europeiska projektet CityMobil2. Navyas bussar har bl.a. testats i Singapore och kommer under 2016 att testas i Schweiz och Australien.

Navya Arma kan transportera upp till 15 passagerare (9 sittplatser) i hastigheter upp till 45 km/h. Den är eldriven och har batterier som kan laddas induktivt.

Källor

[1] EDS Group, Press release. Navya’s Fleet of 100% Autonomous Navya Arma Shuttles is being Deployed to the EDF Nuclear Power Plant in Civaux. 2016-03-17 Länk

Självkörande bussar och lastbilar i Singapore

Den singaporianska regeringen har nu publicerat sin plan för landets framtida transporter [1, 2]. Enligt den kommer folk att transporteras i självkörande bussar och andra typer av självkörande delade fordon, medan gods ska transporteras i lastbilskolonner på motorvägar.

Som ett steg mot att förverkliga den här planen har departementet för transport ingått två avtal (MoU): ett med hamnoperatören PSA Corp och ett med Sentosa Development Corporation och ST Engineering.

Målet med det förstnämnda avtalet är att möjliggöra kolonnkörning med lastbilar, där alla lastbilar förutom den första i kolonnen är självkörande. Innan årsskiftet kommer en utlysning att öppnas med målet att identifiera projekt som utformar och genomför sådana försök i trafiken under en treårsperiod. Det andra avtalet kommer att fokusera på att införa en flotta av självkörande pendelfordon (bussar). Storskaliga försök med sådana fordon väntas starta under 2018, men redan under december 2015 kommer ett fordon kallat Auto Rider att vara tillgängligt till allmänheten. Det har utvecklats av franska företaget EasyMile och kommer att trafikera en fördefinierad 1.5 km lång sträcka i Gardens by the Bay [3]. Auto Rider kan transportera upp till 12 passagerare i hastigheter upp till 25 km/h.

Singapore-MIT Alliance for Research and Technology (SMART) samt Agency for Science, Technology and Research har redan utfört tester med sina självkörande fordon på allmänna vägar.

Ett regelverk som möjliggör provning av självkörande fordon är på plats och just nu håller CARTS (Committee on Autonomous Road Transport in Singapore) att skapa regelverk och ansvarsramverk som möjliggör storskalig implementation.

Källor

[1] Aravindan, A., Reuters. Driverless buses, platoons of trucks to shape Singapore’s transport future. 2015-10-12 Länk

[2] Aripin, A. N., Yahoo Newsroom. Singapore accelerates towards deployment of driverless vehicles with two new trial projects. 2015-10-12 Länk

[3] Robarts, S., GizMag. EasyMile’s driverless bus rolls-out in Singapore and California. 2015-10-16 Länk

Självkörande bussar i Kalifornien

I mitten av nästa år kommer självkörande bussar, eller pendelfordon som de också kallas, från företaget EasyMile att testas i San Ramon i Kalifornien [1]. Det är första gången som sådana tester äger rum i USA.

EasyMile har nämligen ingått ett avtal med Contra Costa Transportation Authority, enligt vilket EasyMile kommer att testa två bussar på testbanan GoMentum och sedan vid företagsparken Bishop Ranch.

Bussarna som kommer att testas är av typen EZ10, dvs. samma typ av fordon som testats i Frankrike, Spanien, Finland, Italien och Schweiz inom ramarna för EU-projektet Citymobil2. De måste dock modifieras för att uppfylla kaliforniska lagar för testning av självkörande fordon på allmänna vägar. Detta innebär att ratt, broms- och gaspedal måste installeras.

Egen kommentar

EZ10 är också fordonet som kommer att testas i Singapore (där de kallas Auto Rider) och i Nederländarna (där de kallas WEpod). Det kan vara så att man gör små modifieringar inom respektive projekt men i grund och botten handlar det alltså om samma fordon.

Det är också värt att nämna att EasyMile erbjuder en mobilitetstjänst och inte bara fordon. I den ingår exempelvis ett mobilt bokningssystem så att kunderna kan förbeställa plats på bussen.

Källor

[1] O’Brian, M., SiliconBeat. Self-driving buses coming to San Ramon office park. 2015-10-05 Länk

WEpod snart i bruk i Nederländerna

Från och med november 2015 kommer det att vara möjligt att åka i en helt självkörande eldriven ”minibuss” i Nederländerna [1]. WEpod, som fordonet kallas, kommer att transportera passagerare mellan städerna Wageningen och Ede i Gelderland provinsen (ca 7 km).

WEpod kommer att köra på vanliga vägar i allmän trafik, men under testfasen kommer den inte att färdas under tuffa förhållanden såsom i rusningstrafik, på natten eller i dåligt väder. Ett kontrollrum kommer att övervaka fordonet och säkerställa att det inte medför någon fara för passagerarna och andra trafikanter. Till en viss början kommer fordonet att köra en förbestämd rutt men förväntas expandera till fler linjer och andra regioner i Nederländerna i maj 2016.

WEpod kan transportera upp till sex personer med en maximal hastighet på 25 km/h. Den kan bokas via en app som gör det möjligt för passagerare att reservera en plats och ange var de vill hämtas och lämnas av. Fordonet har utvecklats av företaget EasyMile och liknande fordon har använts inom ramarna för EU-projektet CityMobil2 (där har de kallats för EZ10).

Projektet är en gemensam satsning mellan provinsen Gelderland, Wageningen University & Research Centre och TU Delft.

Egen kommentar

Det är oklart för mig om WEpods ännu fått tillstånd att färdas på allmänna vägar. Vissa medier skriver att den biten återstår att fixa. Ni som kan nederländska får kanske mer information om det hela via projektets hemsida [2].

EasyMile är en gemensam satsning mellan fordonstillverkaren Ligier Group och robotikföretaget Robosoft.

Källor

[1] Murgia, M., The Telegraph. First driverless pods to travel public roads arrive in the Netherlands. 2015-09-21 Länk

[2] WEpods. Länk