Etikettarkiv: TU Delft

Ljusföroreningar

För närvarande står gatu- och parkeringsbelysning för cirka 90% av all utomhusbelysning i den industrialiserade världen. Ungefär 2% av all energi som används i EU går åt för detta, och fordonsstrålkastare förbrukar ca 3% av fordonets bränsle. Mycket av denna energi är bortkastad och orsakar ljusföreoreningar som har negativ effekt för både djur och människor. 

En grupp forskare från Delft University of Technology föreslår i en nyligen publicerad artikel att automatiserade fordon bör utformas för att minska ljusföroreningar i städer [1].

Förslaget baseras på en moralisk bedömning av automatiserade fordon med följande två argument:

  • Automatiserade fordon är en teknik under utveckling, vilket innebär att designen av både fordonen och den omgivande infrastrukturen är öppen. Design för värden (design for values) är en väg framåt. Enligt den bör man sträva efter att införliva etiska och moraliska värden under utvecklingsfasen av den nya tekniken. 
  • Nattbelysning bör vara ett självklart värde som tas med i beaktandet under utvecklingsfasen av automatiserade fordon. En betydlig minskning av ljusföroreningar och en bättre balans mellan ljus och mörker kan uppnås genom utformning av framtida automatiserade fordon. 

Studien exemplifierar problematiken och hur dessa två argument kan tillämpas i två fallstudier, parkeringsplatser och motorvägar. 

Summa samarium:At the least, autonomous vehicles should be designed to reduce the adverse effects of light pollution. More radically, they can strive to create darker nights and play a role in re-imagining urban nightscapes.

Egen kommentar

Möjligheterna med automation är oändliga. Själv tycker jag att det är intressant att man släpper det ständigt diskuterade moraliska trolley-dilemmat och visar på att det finns fler viktiga etiska och moraliska frågor att ta hänsyn till. 

Något annat intressant i sammanhanget är hur ljusföroreningar skulle påverkas av de nya visuella externa fordonsgränssnitt som föreslagits av flera aktörer för att stödja samspelet mellan automatiserade fordon och andra trafikanter. Kan vinsten med dessa gränssnitt i termer av tillit och säkerhet övervinna de negativa effekterna i termer av ljusföroreningar? 

Källor

[1] Stone et al., Science and engineering ethics. Driving in the Dark: Designing Autonomous Vehicles for Reducing Light Pollution. 2019-03-22 Länk

Nivå 3, en dålig idé?

Ny forskning inom EU-projektet HF Auto  pekar på att automation i SAE nivå 3, där föraren måste övervaka fordonets självkörande funktion, är en potentiellt dålig idé [1]. Daniël Heikoop presenterar sin avhandling ”Driver Psychology during Automated Platooning” [2] den 20/12 vid TU Delft . Genom att bland annat mäta puls och ögonrörelser har Heikoop kunnat dra slutsatser om människans förmåga som övervakare av automation i fordon. Forskningen har tittat på både bilförare (i verklig trafik) och lastbilsförare i konvojkörning (i simulator) med liknande resultat.

Källor:

[1] Highly automated cars are dangerous. TU Delft. Länk

[2] Heikoop, D. D., (2017) ”Driver Psychology during Automated Platooning”. Doktorsavhandling TU Delft. Länk

WEpod snart i bruk i Nederländerna

Från och med november 2015 kommer det att vara möjligt att åka i en helt självkörande eldriven ”minibuss” i Nederländerna [1]. WEpod, som fordonet kallas, kommer att transportera passagerare mellan städerna Wageningen och Ede i Gelderland provinsen (ca 7 km).

WEpod kommer att köra på vanliga vägar i allmän trafik, men under testfasen kommer den inte att färdas under tuffa förhållanden såsom i rusningstrafik, på natten eller i dåligt väder. Ett kontrollrum kommer att övervaka fordonet och säkerställa att det inte medför någon fara för passagerarna och andra trafikanter. Till en viss början kommer fordonet att köra en förbestämd rutt men förväntas expandera till fler linjer och andra regioner i Nederländerna i maj 2016.

WEpod kan transportera upp till sex personer med en maximal hastighet på 25 km/h. Den kan bokas via en app som gör det möjligt för passagerare att reservera en plats och ange var de vill hämtas och lämnas av. Fordonet har utvecklats av företaget EasyMile och liknande fordon har använts inom ramarna för EU-projektet CityMobil2 (där har de kallats för EZ10).

Projektet är en gemensam satsning mellan provinsen Gelderland, Wageningen University & Research Centre och TU Delft.

Egen kommentar

Det är oklart för mig om WEpods ännu fått tillstånd att färdas på allmänna vägar. Vissa medier skriver att den biten återstår att fixa. Ni som kan nederländska får kanske mer information om det hela via projektets hemsida [2].

EasyMile är en gemensam satsning mellan fordonstillverkaren Ligier Group och robotikföretaget Robosoft.

Källor

[1] Murgia, M., The Telegraph. First driverless pods to travel public roads arrive in the Netherlands. 2015-09-21 Länk

[2] WEpods. Länk

 

Är automatiserad körning möjlig med existerande sensorer?

En grupp forskare från Delft University of Technology har undersökt vilken grad av automatisering (partiell, hög, eller fullständig, enligt BASt-klassificeringen) kan uppnås med kommersiella sensorer som används i dagens förarstödsystem (ADAS) [1].

Undersökningen är baserad på en litteraturstudie med hjälp av vilken forskarna identifierat vad som karakteriserar olika trafiksituationer, vilka krav de ställer på sensorer och huruvida dessa krav kan uppfyllas av sensorer som ingår i dagens ADAS-system som ACC, LDW, LDK, FCW och Pedestrian Detection.

Deras slutsats är att varken partiell, hög eller fullständig automatiserad körning är möjliga i stads- och landsbygdsmiljöer. Detta delvis på grund av begränsade synfält hos sensorerna och delvis på grund av trafikkomplexiteten. För motorvägar kan man däremot uppnå partiell körning under specifika förhållanden. Automatiserad körning kommer dock ej att vara möjlig under dåliga väderförhållanden, när vägen är kurvig eller när vägmarkeringarna är dåliga. I dessa situationer kommer föraren att behöva ta över kontrollen.

En annan slutsats som de drar är att bättre digitala kartor och trådlös kommunikation (V2V/V2I) skulle möjliggöra robustare detektering, vilket i sin tur skulle kunna bana väg för hög och fullständig automatisering.

Artikelns sammanfattning är offentlig och återfinns på FISITAs hemsida.

Källor

[1] Kotiadis, D., Happee, R., Bussemaker, K., Automated driving based on current ADAS and their sensors. FISITA 2014, nr. F2014-ACD-041.

Automatiserade och uppkopplade fordon på Chalmers

Igår eftermiddag hölls ett seminarium om automatiserade och uppkopplade fordon på institutionen för Signaler och System, Chalmers. Seminariet inkluderade fem olika presentationer.

Bart van Arem, professor på Delft University of Technology (Nederländerna), var först ut. Målet med hans presentation var att ”besvara” frågan om automatiserad körning kommer lösa våra problem med trafikstockningar. Svaret är ja, under förutsättning att vi gör på rätt sätt, annars kommer vi skapa nya störningar i trafiken. Detta innebär att vi bl.a. behöver göra följande:

  • Samla in och analysera data från storskaliga utvärderingar i verklig trafik. Det är nödvändigt att detta görs på ett vetenskapligt sätt och att resultaten publiceras i vetenskapliga tidskrifter. Just nu är det väldigt mycket som påstås på diverse webbsidor, men egentligen finns det väldigt lite vetenskaplig grund för dessa påståenden.
  • Genomföra fallstudier (case studies) på regionalnivå.
  • Tydliggöra regler och lagkrav (hur ska automatiserade fordon godkännas?).
  • Reality check – reda ut folks medvetenhet om och acceptans av automatiserade fordon.

Bart påpekade också skillnaden mellan två koncept baserade på fordon-till-fordon kommunikation (V2V):

  • cooperative sensing (fordon utbyter information med varandra för att förbättra situationsmedvetenheten) och
  • cooperative control (fordon utbyter information med varandra för att förhandla, samverka och manövrera tillsammans mot ett gemensamt mål).

I samband med detta gav han en överblick av två nyligen genomförda studier som tittat på dessa koncept: ”Modelling supported driving as an optimal control cycle: Framework and model characteristics” samt ”Rolling horizon control framework for driver assistance systems. Part II: Cooperative sensing and cooperative control”. Båda har publicerats i Transportation Research Part C: Emerging Technologies och finansierats av Shell.

Bart berättade också om Dutch Automated Vehicle Initiative (DAVI) vars syfte är att utveckla och utvärdera automatiserade och uppkopplade fordon. Vi har rapporterat om DAVI i ett av våra tidigare nyhetsbrev.

Miguel Ángel Sotelo, professor på University of Alcalá (Spanien), pratade om hur man kan förbättra prediktering av fotgängares intentioner genom att ta hänsyn till olika ledtrådar i deras kroppsspråk. I en pågående studie på hans universitet har man utvecklat en mjukvara som utifrån (stereo)videodata extraherar fram lederna på en fotgängares kropp och skapar en 3D-modell av fotgängaren. Genom att studera kroppshållningen kan mjukvaran förutsäga fotgängarens rörelsebana. För att göra detta används ”low dimensional latent spaces” där fotgängarens rörelser är mer intuitiva och förutsägbara. Vid en tidshorisont på 0.5 sekunder uppnås en positioneringsnoggrannhet av 35-40 cm, medan en tidshorisont på 0.8 sekunder ger en noggrannhet av 60-90 cm.

Gabriel Campos berättade om sin forskning kring koordination av självkörande uppkopplade fordon i vägkorsningar där traditionella kontrollenheter som trafikljus och stoppskyltar tagits bort.

Det viktiga i det här fallet är att:

a) varje fordon styrs på ett sätt som balanserar dess egna och andra fordons intentioner,

b) problem i ett fordon påverkar inte resten av fordon,

c) förändringar i kommunikationen (ex. dropouts) hanteras på ett adekvat sätt.

Gabriel påpekade att kontrollproblemet är beroende av optimering av en konstnadsfunktion där man undviker kollisioner och uppfyller lokala randvillkor.

Han föreslår en decentraliserad kontrollstrategi där fordon stegvis löser lokala optimeringsproblem. Strategin tar speciell hänsyn till hur varje fordons frihetsgrader kan beskrivas för att undvika kollisioner. En viktig del av det hela är i vilket ordning som besluten fattas.

En del av Gabriels forskning har publicerats på IEEE ITSC 2013 med titeln Autonomous cooperative driving: a velocity-based negotiation approach for intersection crossing.

Hakan Köroğl pratade om hur man kan kontrollera fordon som kör i ett kooperativt fordonståg (platooning). För detta använder han sig av ett Linear Matrix Inequality (LMI)-ramverk eftersom parametervariation och heterogenitet då kan hanteras på ett relativt enkelt sätt.

Roozbeh Kianfar presenterade ett styrsystem för lateralstyrning av fordon i ett fordonståg. Det handlar om en distribuerad kontrollstrategi där strängstabilitet (string stability) uppnås genom att omvandla den klassiska definitionen av strängstabilitet i frekvensdomänen till tidsdomänen. Varje fordon räknar fram egen styrstrategi och skickar information om sina intentioner till det efterföljande fordonet. Alla avvikelser mellan predikteringen och intentioner adresseras genom randvillkor i optimeringsproblemet som löses lokalt.

Roozbehs forskning har publicerats på IFAC-AAC 2013 med titeln A Distributed Model Predictive Control Approach to Active Steering Control of String Stable Cooperative Vehicle Platoon.

Kommentar från Alf Peterson, Senior Advisor på Viktoria Swedish ICT:

Det finns gående, cyklister, kollektivtrafik i form av såväl bussar som spårvagn och tåg som var och en kommer att få mycket högre inverkan och sofistikerad prioritering. I storstäderna pratar man mycket om en mer dynamisk användning av gatusystemet, begränsa biltrafik etc. Detta nämns inte i sammanhangen kring kooperativa fordon.

Autonoma fordon i Nederländerna

För någon vecka sedan skrev vi om ett projekt där nederländska forskningsorganisationen TNO hade utvecklat ett kooperativt säkerhetssystem för att förhindra olyckor mellan fordon och cyklister.

TNO arbetar också med att ta fram kostnadseffektiva system som möjliggör automatiserad motorvägskörning för person- och lastbilar [1]. Detta görs i samarbete med TU Delft, RDW och Connekt inom ett projekt som kallas The Dutch Automated Vehicle Initiative (DAVI).

Det som är unikt för DAVI-systemet är att det utöver fordonbaserade sensorer även använder sig av trådlös kommunikation mellan fordon (V2V).

I mitten av november gjordes en demonstration med personbilar på en allmän motorväg.  Bilarna körde i kolonn och förarna hade inga händer på ratten. Filmen kan ses här.

Projektet hoppas kunna göra en liknande demonstration med lastbilar under 2014-2015. Målet är att visa att kolonnkörning kan resultera i bränslebesparingar på 10-20 %, vilket motsvarar 20 % mindre CO2-utsläpp.

Egen kommentar

Det som inte framgår av artikeln ovan är att RDW kommer att utforska legalisering inklusive förfaranden för godkännande av automatiserade fordon i linje med gällande EU-och ECE-forum [2].

DAVI-projektet gör också studier av förarbeteende, speciellt i situationer där det sker en överlämning av kontroll mellan föraren och fordonet. En annan viktig aspekt är utvärdering av acceptans och tillit till kooperativa och automatiserade fordon.

Källor

[1] TNO. Automated driving; from the test track to the public road. 2013-11-12. Länk

[2] The Dutch Automated Vehicle Initiative (DAVI). Länk